Estimates for eigenvalues of Laplacian operator with any order

被引:0
|
作者
Fa-en WU~(1+) Lin-fen CAO~2 1 Department of Mathematics
2 Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
Dirichlet problem; eigenvalue estimate; Laplacian operator;
D O I
暂无
中图分类号
O175.3 [微分算子理论];
学科分类号
摘要
Let D be a bounded domain in an n-dimensional Euclidean space R.Assume that 0<λ≤λ≤…≤λ≤…are the eigenvalues of the Dirichlet Laplacian operator with any order l: (-△)u=λu,in D u=■=…=■=0,on■■D. Then we obtain an upper bound of the(k+1)-th eigenvalueλin terms of the first k eigenvalues. sum from i=1 to k(λ-λ)≤(1/n)[4l(n+2l-2)]{sum from i=1 to k(λ-λ)λsum from i=1 to k(λ-λ)λ}. This ineguaiity is independent of the domain D.Furthermore,for any l≥3 the above inequality is better than all the known results.Our rusults are the natural generalization of inequalities corre- sponding to the case l=2 considered by Qing-Ming Cheng and Hong-Cang Yang.When l=1,our inequalities imply a weaker form of Yang inequalities.We aslo reprove an implication claimed by Cheng and Yang.
引用
收藏
页码:1078 / 1086
页数:9
相关论文
共 50 条
  • [1] Estimates for eigenvalues of Laplacian operator with any order
    Wu, Fa-en
    Cao, Lin-fen
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (08): : 1078 - 1086
  • [2] Estimates for eigenvalues of Laplacian operator with any order
    Fa-en Wu
    Lin-fen Cao
    Science in China Series A: Mathematics, 2007, 50 : 1078 - 1086
  • [3] UNIVERSAL BOUNDS FOR EIGENVALUES OF LAPLACIAN OPERATOR OF ANY ORDER
    黄广月
    陈文艺
    Acta Mathematica Scientia, 2010, 30 (03) : 939 - 948
  • [4] UNIVERSAL BOUNDS FOR EIGENVALUES OF LAPLACIAN OPERATOR OF ANY ORDER
    Huang Guangyue
    Chen Wenyi
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (03) : 939 - 948
  • [5] Estimates for eigenvalues of the poly-Laplacian with any order in a unit sphere
    Qing-Ming Cheng
    Takamichi Ichikawa
    Shinji Mametsuka
    Calculus of Variations and Partial Differential Equations, 2009, 36
  • [6] Estimates for eigenvalues of the poly-Laplacian with any order in a unit sphere
    Cheng, Qing-Ming
    Ichikawa, Takamichi
    Mametsuka, Shinji
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (04) : 507 - 523
  • [7] INEQUALITIES FOR EIGENVALUES OF LAPLACIAN WITH ANY ORDER
    Cheng, Qing-Ming
    Ichikawa, Takamichi
    Mametsuka, Shinji
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (04) : 639 - 655
  • [8] On higher order eigenvalues of the spherical Laplacian operator
    Shieh, CT
    TAIWANESE JOURNAL OF MATHEMATICS, 2005, 9 (03): : 521 - 530
  • [9] Estimates for eigenvalues of the bi-drifting Laplacian operator
    Feng Du
    Chuanxi Wu
    Guanghan Li
    Changyu Xia
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 703 - 726
  • [10] Estimates for eigenvalues of the bi-drifting Laplacian operator
    Du, Feng
    Wu, Chuanxi
    Li, Guanghan
    Xia, Changyu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 703 - 726