PT-symmetry berry phases,topology and PT-symmetry breaking

被引:0
|
作者
Jinghui Pi [1 ]
Ning Ning Sun [1 ]
Rong Lü [1 ,2 ,3 ]
机构
[1] Department of Physics, Tsinghua University
[2] Frontier Science Center for Quantum Information
关键词
PT symmetry Berry phases; topology; PT symmetry breaking;
D O I
暂无
中图分类号
O413.1 [量子力学(波动力学、矩阵力学)];
学科分类号
070205 ; 0809 ;
摘要
We study the complex Berry phases in non-Hermitian systems with parity-and time-reversal(PT) symmetry.We investigate a kind of two-level system with PT symmetry.We find that the real part of the the complex Berry phases have two quantized values and they are equal to either 0 or Π,which originates from the topology of the Hermitian eigenstates.We also find that if we change the relative parameters of the Hamiltonian from the unbroken-PT-symmetry phase to the broken-PT-symmetry phase,the imaginary part of the complex Berry phases are divergent at the exceptional points.We exhibit two concrete examples in this work,one is a two-level toys model,which has nontrivial Berry phases;the other is the generalized Su-Schrieffer-Heeger(SSH) model that has physical loss and gain in every sublattice.Our results explicitly demonstrate the relation between complex Berry phases,topology and PT-symmetry breaking and enrich the field of the non-Hermitian physics.
引用
收藏
页码:47 / 53
页数:7
相关论文
共 50 条
  • [41] An investigation of PT-symmetry breaking in tight-binding chains
    Luck, Jean-Marc
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (01):
  • [42] Optical limiter based on PT-symmetry breaking of reflectionless modes
    Riboli, Francesco
    Kononchuk, Rodion
    Tommasi, Federico
    Boschetti, Alice
    Suwunnarat, Suwun
    Anisimov, Igor
    Vitebskiy, Ilya
    Wiersma, Diederik S.
    Cavalieri, Stefano
    Kottos, Tsampikos
    Chabanov, Andrey A.
    OPTICA, 2023, 10 (10): : 1302 - 1309
  • [43] PT-symmetry breaking and ubiquitous maximal chirality in a PT-symmetric ring
    Scott, Derek D.
    Joglekar, Yogesh N.
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [44] Photonic Scattering on a Trimer with PT-Symmetry
    Y. Y. Xu
    H. B. Zhu
    Z. H. Wang
    International Journal of Theoretical Physics, 2018, 57 : 1304 - 1309
  • [45] PT-symmetry in honeycomb photonic lattices
    Szameit, Alexander
    Rechtsman, Mikael C.
    Bahat-Treidel, Omri
    Segev, Mordechai
    PHYSICAL REVIEW A, 2011, 84 (02):
  • [46] PT-Symmetry of Coupled Fiber Lasers
    Smirnov, Sergey V.
    Churkin, Dmitry V.
    Makarenko, Maxim
    Vatnik, Ilya
    Suchkov, Sergey V.
    Sukhorukov, Andrey A.
    AOPC 2017: LASER COMPONENTS, SYSTEMS, AND APPLICATIONS, 2017, 10457
  • [47] PT-symmetry in kagome photonic lattices
    Chern, Gia-Wei
    Saxena, Avadh
    ACTIVE PHOTONIC PLATFORMS IX, 2017, 10345
  • [48] Axisymmetric photonic structures with PT-symmetry
    Ahmed, Waqas W.
    Herrero, Ramon
    Botey, Muriel
    Staliunas, Kestutis
    ACTIVE PHOTONIC MATERIALS VIII, 2016, 9920
  • [49] Exact PT-symmetry is equivalent to Hermiticity
    Mostafazadeh, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (25): : 7081 - 7091
  • [50] PT-symmetry management in oligomer systems
    Horne, R. L.
    Cuevas, J.
    Kevrekidis, P. G.
    Whitaker, N.
    Abdullaev, F. Kh
    Frantzeskakis, D. J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (48)