A BRAY-BRENDLE-NEVES TYPE INEQUALITY FOR A RIEMANNIAN MANIFOLD

被引:0
|
作者
邓洪存 [1 ]
机构
[1] School of Mathematics and Information Sciences, Yantai University
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
0701 ; 070101 ;
摘要
In this paper, for any local area-minimizing closed hypersurface Σ with ■, immersed in a(n + 1)-dimension Riemannian manifold M which has positive scalar curvature and nonnegative Ricci curvature, we obtain an upper bound for the area of Σ. In particular, when Σ saturates the corresponding upper bound, Σ is isometric to S;and M splits in a neighborhood of Σ. At the end of the paper, we also give the global version of this result.
引用
收藏
页码:487 / 492
页数:6
相关论文
共 50 条
  • [31] ON A TYPE OF SEMI-SYMMETRIC METRIC CONNECTION ON A RIEMANNIAN MANIFOLD
    Chand, De Uday
    Barman, Ajit
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 211 - 218
  • [32] New Yamabe-type flow in a compact Riemannian manifold
    Ma, Li
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 184
  • [33] ON A TYPE OF SEMI-SYMMETRIC METRIC CONNECTION ON A RIEMANNIAN MANIFOLD
    CHAKI, MC
    KAR, SK
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1983, 36 (01): : 57 - 60
  • [34] A Reilly Inequality for the First Non-zero Eigenvalue of a Class of Operators on Riemannian Manifold
    Chen, Qun
    Shi, Jianghai
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (03): : 481 - 493
  • [35] Given a smooth compact Riemannian n-dimensional manifold, consider the Sobolev inequality
    Hebey, E
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (07): : 721 - 733
  • [36] A Reilly Inequality for the First Non-zero Eigenvalue of a Class of Operators on Riemannian Manifold
    Qun Chen
    Jianghai Shi
    Bulletin of the Brazilian Mathematical Society, New Series, 2018, 49 : 481 - 493
  • [37] Extragradient Type Methods for Riemannian Variational Inequality Problems
    Hu, Zihao
    Wang, Guanghui
    Wang, Xi
    Wibisono, Andre
    Abernethy, Jacob
    Tao, Molei
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [38] On a Poletskii-Type Inequality for Mappings of the Riemannian Surfaces
    Sevost'yanov, E. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (05) : 816 - 835
  • [39] On a Poletskii-Type Inequality for Mappings of the Riemannian Surfaces
    E. A. Sevost’yanov
    Ukrainian Mathematical Journal, 2020, 72 : 816 - 835
  • [40] CLR-type inequality on a suitable smooth manifold
    El Aïdi M.
    Ricerche di Matematica, 2016, 65 (1) : 155 - 161