A NESTED PARTITIONS FRAMEWORK FOR SOLVING LARGE-SCALE MULTICOMMODITY FACILITY LOCATION PROBLEMS

被引:0
|
作者
Robert R.MEYER
Mehmet BOZBAY
Andrew J.MILLER
机构
[1] Computer Sciences Department University of Wisconsin
[2] WI 53706 USA
[3] Madison
[4] Department of Industrial Engineering University of Wisconsin
基金
美国国家科学基金会;
关键词
Optimization; metaheuristics; mixed integer programming;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Large-scale multicommodity facility location problems are generally intractable with respect to standard mixed-integer programming (MIP) tools such as the direct application of general-purpose Branch & Cut (BC) commercial solvers i.e. CPLEX. In this paper, the authors investigate a nested partitions (NP) framework that combines meta-heuristics with MIP tools (including branch-and-cut). We also consider a variety of alternative formulations and decomposition methods for this problem class. Our results show that our NP framework is capable of efficiently producing very high quality solutions to multicommodity facility location problems. For large-scale problems in this class, this approach is significantly faster and generates better feasible solutions than either CPLEX (applied directly to the given MIP) or the iterative Lagrangian-based methods that have generally been regarded as the most effective structure-based techniques for optimization of these problems. We also briefly discuss some other large-s
引用
收藏
页码:158 / 179
页数:22
相关论文
共 50 条
  • [41] On solving large-scale weighted least squares problems
    Baryamureeba, V
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 59 - 67
  • [42] Solving very large-scale structural optimization problems
    Hüttner, F.
    Grosspietsch, M.
    1600, American Institute of Aeronautics and Astronautics Inc., 1801 Alexander Bell Drive, Suite 500, Reston, VA 20191-4344, United States (45):
  • [43] Solving large-scale fuzzy and possibilistic optimization problems
    Lodwick, WA
    Jamison, KD
    Bachman, KA
    NAFIPS 2004: ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1AND 2: FUZZY SETS IN THE HEART OF THE CANADIAN ROCKIES, 2004, : 146 - 150
  • [44] Solving large-scale fuzzy and possibilistic optimization problems
    Lodwick W.A.
    Bachman K.A.
    Fuzzy Optimization and Decision Making, 2005, 4 (4) : 257 - 278
  • [45] Solving large-scale multicriteria problems by the decomposition method
    Rabinovich, Ya. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (01) : 60 - 74
  • [46] Efficiently solving very large-scale routing problems
    Arnold, Florian
    Gendreau, Michel
    Sorensen, Kenneth
    COMPUTERS & OPERATIONS RESEARCH, 2019, 107 : 32 - 42
  • [47] CuLDA: Solving Large-scale LDA Problems on GPUs
    Xie, Xiaolong
    Liang, Yun
    Li, Xiuhong
    Tan, Wei
    HPDC'19: PROCEEDINGS OF THE 28TH INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE PARALLEL AND DISTRIBUTED COMPUTING, 2019, : 195 - 205
  • [48] Solving large-scale eigenvalue problems in SciDAC applications
    Yang, C
    SciDAC 2005: Scientific Discovery Through Advanced Computing, 2005, 16 : 425 - 434
  • [49] Solving Large-scale Stochastic Orienteering Problems with Aggregation
    Thayer, Thomas C.
    Carpin, Stefano
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 2452 - 2458
  • [50] EFFICIENT ALGORITHM FOR SOLVING LARGE-SCALE PORTFOLIO PROBLEMS
    BREEN, W
    JACKSON, R
    JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 1971, 6 (01) : 627 - 637