共 18 条
基于Word2vec的微博短文本分类研究
被引:53
作者:
张谦
高章敏
刘嘉勇
机构:
[1] 四川大学电子信息学院
来源:
关键词:
短文本分类;
Word2vec;
TFIDF;
支持向量机;
D O I:
暂无
中图分类号:
TP391.1 [文字信息处理];
学科分类号:
081203 ;
0835 ;
摘要:
随着微博等社会化媒体的信息量急剧膨胀,人们迫切需要实现这些信息的自动分类处理,以帮助用户快速查找所需信息和过滤垃圾信息。针对传统文本分类模型存在的特征维数灾难、无语义特征等问题,文章基于Word2vec模型对微博短文本进行了分类研究。鉴于Word2vec模型无法区分文本中词汇的重要程度,进一步引入TFIDF对Word2vec词向量进行加权,实现加权的Word2vec分类模型。最后合并加权Word2vec和TFIDF两种模型,实验结果表明合并后模型分类准确率高于加权Word2vec模型和使用TFIDF的传统文本分类模型。
引用
收藏
页码:57 / 62
页数:6
相关论文

