Combining ability for main quality traits in peanut(Arachis hypogaea L.)

被引:0
|
作者
Chuantang Wang [1 ]
Zhiwei Wang [1 ]
Hongwei Han [2 ]
Jiakai Li [3 ]
Hongjv Li [1 ]
Xiushan Sun [1 ]
Guosheng Song [1 ]
机构
[1] Shandong Peanut Research Institute
[2] Shenyang Agricultural University
[3] Jilin Agricultural University
关键词
D O I
暂无
中图分类号
S565.2 [花生];
学科分类号
摘要
High-oleic peanuts has been recognized by processing sectors, seed sellers and consumers for their longer shelf life, longer seed life and mutiple healthe benefits. High oleate is becoming a requisite for varietal releases in many peanut breeding programs at present. To select desirable parents for high-oleic peanut breeding, the study was conducted to evaluate the combining ability of 5 high-oleic donors from our research team, based on quality of individual single seeds. General combining ability was significant for oleic, linoleic, stearic and palmitic acid, oil and protein, while specific combining ability was significant for the traits except oil. Among them, oil content was found to be conditioned solely by additive gene actions, and for other quality traits, additive gene effects were more important than non-additive gene effects. High-oleic CTW and normal-oleic Xiaojingsheng were selected as the best general combiners for peanut oleic acid improvement. Narrow-sense heritability was high for quality traits other than protein, suggesting that there was high potential for genetic improvement in these traits.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 50 条
  • [41] Progress in genetic engineering of peanut (Arachis hypogaea L.)-A review
    Krishna, Gaurav
    Singh, Birendra K.
    Kim, Eun-Ki
    Morya, Vivek K.
    Ramteke, Pramod W.
    PLANT BIOTECHNOLOGY JOURNAL, 2015, 13 (02) : 147 - 162
  • [42] Effect of silver nitrate on organogenesis of peanut (Arachis hypogaea L.)
    Ozudogru, E. A.
    Ozden-Tokatli, Y.
    Akcin, A.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2004, 40 : 46A - 46A
  • [43] Nutritional composition of new peanut (Arachis hypogaea L.) cultivars
    Campos-Mondragon, M. G.
    Calderon De La Barca, A. M.
    Duran-Prado, A.
    Campos-Reyes, L. C.
    Oliart-Ros, R. M.
    Ortega-Garcia, J.
    Medina-Juarez, L. A.
    Angulo, O.
    GRASAS Y ACEITES, 2009, 60 (02) : 161 - 167
  • [44] Diclosulam systems for weed management in peanut (Arachis hypogaea L.)
    Bailey, WA
    Wilcut, JW
    WEED TECHNOLOGY, 2002, 16 (04) : 807 - 814
  • [45] The genome donors of the groundnut/peanut (Arachis hypogaea L.) revisited
    A.K. Singh
    J. Smartt
    Genetic Resources and Crop Evolution, 1998, 45 : 113 - 116
  • [46] The genome donors of the groundnut/peanut (Arachis hypogaea L.) revisited
    Singh, AK
    Smartt, J
    GENETIC RESOURCES AND CROP EVOLUTION, 1998, 45 (02) : 113 - 118
  • [47] PHOTOCONTROL OF PEANUT (ARACHIS HYPOGAEA L.) OVULE DEVELOPMENT IN VITRO
    Thompson, L. K.
    Ziv, M.
    Deitzer, G. F.
    PLANT PHYSIOLOGY, 1984, 75 : 79 - 79
  • [48] Purification and characterization of a chitinase from peanut (Arachis hypogaea L.)
    Wang, Shaoyun
    Shao, Biao
    Ye, Xiuyun
    Rao, Pingfran
    JOURNAL OF FOOD BIOCHEMISTRY, 2008, 32 (01) : 32 - 45
  • [49] Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.)
    Guohao He
    Ronghua Meng
    Melanie Newman
    Guoqing Gao
    Roy N Pittman
    CS Prakash
    BMC Plant Biology, 3 (1)
  • [50] Transcriptome analysis of alternative splicing in peanut (Arachis hypogaea L.)
    Ruan, Jian
    Guo, Feng
    Wang, Yingying
    Li, Xinguo
    Wan, Shubo
    Shan, Lei
    Peng, Zhenying
    BMC PLANT BIOLOGY, 2018, 18