Self-Supervised Monocular Depth Estimation via Discrete Strategy and Uncertainty

被引:0
|
作者
Zhenyu Li [1 ,2 ]
Junjun Jiang [1 ,2 ]
Xianming Liu [1 ,2 ]
机构
[1] the School of Computer Science and Technology,Harbin Institute of Technology
[2] Peng Cheng Laboratory
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
Dear Editor, This letter is concerned with self-supervised monocular depth estimation. To estimate uncertainty simultaneously, we propose a simple yet effective strategy to learn the uncertainty for selfsupervised monocular depth estimation with the discrete strategy that explicitly associates the prediction and the uncertainty to train the networks. Furthermore, we propose the uncertainty-guided feature fusion module to fully utilize the uncertainty information.
引用
收藏
页码:1307 / 1310
页数:4
相关论文
共 50 条
  • [1] Self-Supervised Monocular Depth Estimation via Discrete Strategy and Uncertainty
    Li, Zhenyu
    Jiang, Junjun
    Liu, Xianming
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (07) : 1307 - 1310
  • [2] On the uncertainty of self-supervised monocular depth estimation
    Poggi, Matteo
    Aleotti, Filippo
    Tosi, Fabio
    Mattoccia, Stefano
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3224 - 3234
  • [3] Self-Supervised Monocular Depth Estimation by Digging into Uncertainty Quantification
    Li, Yuan-Zhen
    Zheng, Sheng-Jie
    Tan, Zi-Xin
    Cao, Tuo
    Luo, Fei
    Xiao, Chun-Xia
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2023, 38 (03) : 510 - 525
  • [4] Self-Supervised Monocular Depth Estimation by Digging into Uncertainty Quantification
    Yuan-Zhen Li
    Sheng-Jie Zheng
    Zi-Xin Tan
    Tuo Cao
    Fei Luo
    Chun-Xia Xiao
    Journal of Computer Science and Technology, 2023, 38 : 510 - 525
  • [5] Monocular Depth Estimation via Self-Supervised Self-Distillation
    Hu, Haifeng
    Feng, Yuyang
    Li, Dapeng
    Zhang, Suofei
    Zhao, Haitao
    SENSORS, 2024, 24 (13)
  • [6] Self-Supervised Learning of Monocular Depth Estimation Based on Progressive Strategy
    Wang, Huachun
    Sang, Xinzhu
    Chen, Duo
    Wang, Peng
    Yan, Binbin
    Qi, Shuai
    Ye, Xiaoqian
    Yao, Tong
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 : 375 - 383
  • [7] Digging Into Self-Supervised Monocular Depth Estimation
    Godard, Clement
    Mac Aodha, Oisin
    Firman, Michael
    Brostow, Gabriel
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3827 - 3837
  • [8] Self-supervised monocular depth estimation in fog
    Tao, Bo
    Hu, Jiaxin
    Jiang, Du
    Li, Gongfa
    Chen, Baojia
    Qian, Xinbo
    OPTICAL ENGINEERING, 2023, 62 (03)
  • [9] Revisiting Self-supervised Monocular Depth Estimation
    Kim, Ue-Hwan
    Lee, Gyeong-Min
    Kim, Jong-Hwan
    ROBOT INTELLIGENCE TECHNOLOGY AND APPLICATIONS 6, 2022, 429 : 336 - 350
  • [10] Self-supervised monocular depth estimation via asymmetric convolution block
    Hu, Lingling
    Zhang, Hao
    Wang, Zhuping
    Huang, Chao
    Zhang, Changzhu
    IET CYBER-SYSTEMS AND ROBOTICS, 2022, 4 (02) : 131 - 138