Plasticityimprovement of a Zr-based bulk metallic glass by micro-arc oxidation

被引:0
|
作者
Yong-jiang Huang [1 ,2 ,3 ]
Peng Xue [2 ]
Xiang Cheng [2 ]
Ya-ming Wang [4 ]
Fu-yang Cao [2 ]
Zhi-liang Ning [2 ]
Jian-fei Sun [1 ,2 ]
机构
[1] State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology
[2] School of Materials Science and Engineering,Harbin Institute of Technology
[3] Key Laboratory of Micro-systems and Micro-structures Manufacturing(Harbin Institute of Technology),Ministry of Education
[4] Institute for Advanced Ceramics,Harbin Institute of Technology
基金
中国国家自然科学基金;
关键词
Bulk metallic glass; Micro-arc oxidation; Plasticity; Surface modification; Shear band;
D O I
暂无
中图分类号
TG139.8 [];
学科分类号
080502 ;
摘要
Mciro-arc oxidation(MAO)was used to coat porous films on the surface of a Zr-based bulk metallic glass sample.The compressive test results indicated that,compared with the as-cast sample,the MAO treated one exhibited higher deformation capacity,associated with multiple shear bands with higher density on the side surface and well-developed vein patterns with smaller size on the fractured surface.The pore in the MAOed film and the matrix/coating interface initiated the shear bands and impeded the rapid propagation of shear bands,thus favoring the enhanced plasticity of the MAO treated sample.The obtained results demonstrated that MAO can be considered as an effective method to finely tune the mechanical performance of monolithic bulk metallic glasses.
引用
收藏
页码:416 / 420
页数:5
相关论文
共 50 条
  • [31] Stable fracture of a malleable Zr-based bulk metallic glass
    Sun, B. A.
    Tan, J.
    Pauly, S.
    Kuehn, U.
    Eckert, J.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (10)
  • [32] Indentation creep behavior of a Zr-based bulk metallic glass
    Fatay, D.
    Gubicza, J.
    Lendvai, J.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 434 : 75 - 78
  • [34] Temperature Effect on Fracture of a Zr-Based Bulk Metallic Glass
    Yang, Na
    Yi, Jun
    Yang, Yu Hang
    Huang, Bo
    Jia, Yan Dong
    Kou, Sheng Zhong
    Wang, Gang
    MATERIALS, 2020, 13 (10)
  • [35] Reciprocating wear mechanisms in a Zr-based bulk metallic glass
    Jin H.W.
    Ayer R.
    Koo J.Y.
    Raghavan R.
    Ramamurty U.
    Journal of Materials Research, 2007, 22 (2) : 264 - 273
  • [36] Ambient temperature embrittlement of a Zr-based bulk metallic glass
    Jiang, F.
    Wang, H. F.
    Jiang, M. Q.
    Li, G.
    Zhao, Y. L.
    He, L.
    Sun, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 549 : 14 - 19
  • [37] Microstructural studies of crystallization of a Zr-based bulk metallic glass
    Pekarskaya, E
    Löffler, JF
    Johnson, WL
    ACTA MATERIALIA, 2003, 51 (14) : 4045 - 4057
  • [38] Ball indentation tests for a Zr-based bulk metallic glass
    Trichy, GR
    Scattergood, RO
    Koch, CC
    Murty, KL
    SCRIPTA MATERIALIA, 2005, 53 (12) : 1461 - 1465
  • [39] Serrated flow kinetics in a Zr-based bulk metallic glass
    Qiao, J. W.
    Zhang, Y.
    Liaw, P. K.
    INTERMETALLICS, 2010, 18 (11) : 2057 - 2064
  • [40] Compressive fracture characteristics of Zr-based bulk metallic glass
    Fan ZhenJun
    Zheng ZhiYuan
    Jiao ZengBao
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2010, 53 (05) : 823 - 827