Remote sensing Extraction model of redtide biomass by airborne hyperspectral technique

被引:0
|
作者
MA Yi~ 1
机构
关键词
Remote sensing Extraction model of redtide biomass by airborne hyperspectral technique;
D O I
暂无
中图分类号
TP79 [遥感技术的应用];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Our work is based on the known research results of inherent optical quality of ocean color constituents.According to optimized parameters and induced fluorescence term of chlorophyll, this paper puts forward a remote sensing reflectance model of sea water, which is fitted in Liaodong Bay of Bohai. An inverse model that can evaluate redtide biomass according to chlorophyll retrieval is provided by inducing a functional extreme problem. The calculation example of the model indicates that the inversion model has explicit mathematic and physical meaning, but its practicability needs to be verified.
引用
收藏
页码:58 / 62
页数:5
相关论文
共 50 条
  • [31] Construction and Data Analysis of Test-bed by Hyperspectral Airborne Remote Sensing
    Chang, Anjin
    Kim, Yongil
    Choi, Seokkeun
    Han, Dongyeob
    Choi, Jaewan
    Kim, Yongmin
    Han, Youkyung
    Park, Honglyun
    Wang, Biao
    Lim, Heechang
    KOREAN JOURNAL OF REMOTE SENSING, 2013, 29 (02) : 161 - 172
  • [32] Object-oriented subspace analysis for airborne hyperspectral remote sensing imagery
    Zhang, Liangpei
    Huang, Xin
    NEUROCOMPUTING, 2010, 73 (4-6) : 927 - 936
  • [33] Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery
    Zhang, Yongqin
    Chen, Jing M.
    Miller, John R.
    Noland, Thomas L.
    REMOTE SENSING OF ENVIRONMENT, 2008, 112 (07) : 3234 - 3247
  • [34] Estimation of crop biophysical parameters through airborne and field hyperspectral remote sensing
    Goel, PK
    Prasher, SO
    Landry, JA
    Patel, RM
    Viau, AA
    Miller, JR
    TRANSACTIONS OF THE ASAE, 2003, 46 (04): : 1235 - 1246
  • [35] Prediction of black soil nutrient content based on airborne hyperspectral remote sensing
    Yang Y.
    Zhao Y.
    Qin K.
    Zhao N.
    Yang C.
    Zhang D.
    Cui X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (20): : 94 - 101
  • [36] Airborne hyperspectral remote sensing image data is used for rice precise classification
    Zhang, Feng
    Xiong, Zhen
    Kou, Ning
    Wuhan Ligong Daxue Xuebao/Journal of Wuhan University of Technology, 2002, 24 (10):
  • [37] Special Section Guest Editorial: Airborne Hyperspectral Remote Sensing of Urban Environments
    Du, Qian
    Gamba, Paolo
    JOURNAL OF APPLIED REMOTE SENSING, 2014, 8
  • [38] The Selectable Hyperspectral Airborne Remote sensing Kit (SHARK) as an enabler for precision agriculture
    Holasek, Rick
    Nakanishi, Keith
    Ziph-Schatzberg, Leah
    Santman, Jeff
    Woodman, Patrick
    Zacaroli, Richard
    Wiggins, Richard
    HYPERSPECTRAL IMAGING SENSORS: INNOVATIVE APPLICATIONS AND SENSOR STANDARDS 2017, 2017, 10213
  • [39] Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection
    Thorsten Mewes
    Jonas Franke
    Gunter Menz
    Precision Agriculture, 2011, 12
  • [40] Model for the interpretation of hyperspectral remote-sensing reflectance
    Lee, Zhongping
    Carder, Kendall L.
    Hawes, Steve K.
    Steward, Robert G.
    Peacock, Thomas G.
    Davis, Curtiss O.
    Applied Optics, 1994, 33 (24): : 5721 - 5732