Backward doubly stochastic differential equations driven by Brownian motions and Poisson process(BDSDEP) with non-Lipschitz coeffcients on random time interval are studied.The probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations(SPDIEs) is treated with BDSDEP.Under non-Lipschitz conditions,the existence and uniqueness results for measurable solutions to BDSDEP are established via the smoothing technique.Then,the continuous dependence for solutions to BDSDEP is derived.Finally,the probabilistic interpretation for the solutions to a class of quasilinear SPDIEs is given.