A TVD Type Wavelet-Galerkin Method for Hamilton-Jacobi Equations

被引:0
|
作者
Ling-yan Tang Song-he Song Department of Mathematics and System Science
机构
基金
中国国家自然科学基金;
关键词
Hamilton-jacobi equation; wavelet-galerkin method; daubechies wavelet; TVD method;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
In this paper,we use Daubechies scaling functions as test functions for the Galerkin method,and discuss Wavelet-Galerkin solutions for the Hamilton-Jacobi equations.It can be proved that the schemesare TVD schemes.Numerical tests indicate that the schemes are suitable for the Hamilton-Jacobi equations.Furthermore,they have high-order accuracy in smooth regions and good resolution of singularities.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 50 条
  • [31] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [32] Systems of Hamilton-Jacobi equations
    Julio Cambronero
    Javier Pérez Álvarez
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 650 - 658
  • [33] Relaxation of Hamilton-Jacobi Equations
    Hitoshi Ishii
    Paola Loreti
    Archive for Rational Mechanics and Analysis, 2003, 169 : 265 - 304
  • [34] On vectorial Hamilton-Jacobi equations
    Imbert, C
    Volle, M
    CONTROL AND CYBERNETICS, 2002, 31 (03): : 493 - 506
  • [35] An adaptive sparse grid local discontinuous Galerkin method for Hamilton-Jacobi equations in high dimensions
    Guo, Wei
    Huang, Juntao
    Tao, Zhanjing
    Cheng, Yingda
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 436
  • [36] An iterative algorithm for solving Hamilton-Jacobi type equations
    Markman, J
    Katz, IN
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (01): : 312 - 329
  • [37] Representation Formulas for Contact Type Hamilton-Jacobi Equations
    Hong, Jiahui
    Cheng, Wei
    Hu, Shengqing
    Zhao, Kai
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (03) : 2315 - 2327
  • [38] Global subanalytic solutions of Hamilton-Jacobi type equations
    Trélat, E
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (03): : 363 - 387
  • [39] Fully nonlinear Hamilton-Jacobi equations of degenerate type
    Jesus, David
    Pimentel, Edgard A.
    Urbano, Jose Miguel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 227
  • [40] Representation Formulas for Contact Type Hamilton-Jacobi Equations
    Jiahui Hong
    Wei Cheng
    Shengqing Hu
    Kai Zhao
    Journal of Dynamics and Differential Equations, 2022, 34 : 2315 - 2327