A Finite Difference Scheme for a Semiconductor Device Problem on Grids with Local Refinement in Time and Space

被引:0
|
作者
Wei Liu and Yirang Yuan School of Mathematics and System Science
机构
基金
中国国家自然科学基金;
关键词
Semiconductor device; local refinement; finite difference scheme; error estimate;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
摘要
The momentary state of a semiconductor device is described by a system of three nonlinear partial differential equations. A finite difference scheme for simulating transient behaviors of a semiconductor device on grids with local refinement in time and space is constructed and studied. Error analysis is presented and is illustrated by numerical examples.
引用
收藏
页码:278 / 288
页数:11
相关论文
共 50 条
  • [31] Adaptive residual refinement in an RBF finite difference scheme for 2D time-dependent problems
    G. Garmanjani
    M. Esmaeilbeigi
    R. Cavoretto
    Computational and Applied Mathematics, 2024, 43
  • [32] Adaptive residual refinement in an RBF finite difference scheme for 2D time-dependent problems
    Garmanjani, G.
    Esmaeilbeigi, M.
    Cavoretto, R.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01):
  • [33] ROBUST FINITE-DIFFERENCE SCHEME FOR ELASTIC-WAVES ON COARSE GRIDS
    ZAHRADNIK, J
    HRON, F
    STUDIA GEOPHYSICA ET GEODAETICA, 1992, 36 (01) : 1 - 19
  • [34] A linear finite-difference scheme for approximating randers distances on cartesian grids*
    Bonnans, J. Frederic
    Bonnet, Guillaume
    Mirebeau, Jean-Marie
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
  • [35] SECOND ORDER DIFFERENCE SCHEME FOR TRANSIENT SEMICONDUCTOR DEVICE SIMULATION.
    Ringhofer, Christian A.
    Transactions of the Society for Computer Simulation, 1986, 3 (04): : 253 - 278
  • [36] Crank-Nicolson Finite Difference Scheme for Time-Space Fractional Diffusion Equation
    Takale, Kalyanrao C.
    Sangvikar , Veena V.
    MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 701 - 710
  • [37] Finite difference scheme for time-space fractional diffusion equation with fractional boundary conditions
    Xie, Changping
    Fang, Shaomei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3473 - 3487
  • [38] Nearwell local space and time refinement in reservoir simulation
    Kheriji, Walid
    Masson, Roland
    Moncorge, Arthur
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 118 : 273 - 292
  • [39] Hierarchical time adaptive refinement scheme for the finite element elastodynamics
    Cho, Jin-Woo
    Youn, Sung-Kie
    Computers and Structures, 1995, 56 (04): : 645 - 650
  • [40] A stable finite-difference time-domain scheme for local time-stepping on an adaptive mesh
    Pederson, Dylan M.
    Raja, Laxminarayan L.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 456 - 476