针对电力系统负荷具有拟周期性、非平稳性、非线性等特点,提出一种小波-神经网络-PARIMA模型并研究它在电力系统短期负荷预报中的应用:利用小波变换提取和分离负荷的各种隐周期和非线性,把小波分解的特性和分解数据随尺度倍增而倍减的规律用于感知机神经网络(MLP)和周期自回归移动模型(PARIMA)的建模,各尺度小波分解用MLP进行建模和预报,最大尺度上的尺度分解用 PARIMA进行建模和预报。最后,利用径向基函数网络(RBF)将各尺度域的预报结果组合成为负荷最终预报。实例说明,该方法能够揭示负荷的拟周期性、非平稳性、非线性,在电力系统短期负荷预报中的应用是成功的和有效的。