Feature matching using quasi-conformal maps

被引:0
|
作者
Chun-xue WANG [1 ]
Li-gang LIU [1 ]
机构
[1] School of Mathematical Sciences, University of Science and Technology of China
基金
中国国家自然科学基金;
关键词
Feature correspondence; Quasi-conformal map; Splitting method;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
We present a fully automatic method for finding geometrically consistent correspondences while discarding outliers from the candidate point matches in two images. Given a set of candidate matches provided by scale-invariant feature transform(SIFT) descriptors, which may contain many outliers, our goal is to select a subset of these matches retaining much more geometric information constructed by a mapping searched in the space of all diffeomorphisms. This problem can be formulated as a constrained optimization involving both the Beltrami coefficient(BC) term and quasi-conformal map, and solved by an efficient iterative algorithm based on the variable splitting method. In each iteration, we solve two subproblems, namely a linear system and linearly constrained convex quadratic programming. Our algorithm is simple and robust to outliers. We show that our algorithm enables producing more correct correspondences experimentally compared with state-of-the-art approaches.
引用
收藏
页码:644 / 657
页数:14
相关论文
共 50 条
  • [31] Tooth morphometry using quasi-conformal theory
    Choi, Gary P. T.
    Chan, Hei Long
    Yong, Robin
    Ranjitkar, Sarbin
    Brook, Alan
    Townsend, Grant
    Chen, Ke
    Lui, Lok Ming
    PATTERN RECOGNITION, 2020, 99
  • [32] A QUASI-CONFORMAL EXTENSION USING THE PARAMETRIC REPRESENTATION
    REICH, E
    JOURNAL D ANALYSE MATHEMATIQUE, 1990, 54 : 246 - 258
  • [33] Virtual Conformal Arrays Using Quasi-Conformal Transformation Optics Lenses
    Kwon, Do-Hoon
    2013 7TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2013, : 2192 - U1026
  • [34] QUASI-CONFORMAL DEFORMATION OF A BALL
    SEMENOV, VI
    SIBERIAN MATHEMATICAL JOURNAL, 1992, 33 (01) : 95 - 110
  • [35] MAPPINGS THAT ARE QUASI-CONFORMAL IN THE MEAN
    KRUGLIKOV, VI
    DOKLADY AKADEMII NAUK SSSR, 1985, 283 (06): : 1309 - 1311
  • [36] EXTREMAL QUASI-CONFORMAL MAPPINGS
    FEHLMANN, R
    COMMENTARII MATHEMATICI HELVETICI, 1981, 56 (04) : 558 - 580
  • [37] APPROXIMATION ON THE QUASI-CONFORMAL ARES
    ANDRIEVSKY, VV
    GERMAN, SP
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1980, (10): : 3 - 6
  • [38] On contact quasi-conformal immersions
    Zorich, VA
    RUSSIAN MATHEMATICAL SURVEYS, 2005, 60 (02) : 382 - 383
  • [39] Computing Quasi-Conformal Folds
    Qiu, Di
    Lam, Ka-Chun
    Lui, Lok-Ming
    SIAM JOURNAL ON IMAGING SCIENCES, 2019, 12 (03): : 1392 - 1424
  • [40] EXTREMAL QUASI-CONFORMAL MAPPINGS
    BILUTA, PA
    KRUSHKAL, SL
    DOKLADY AKADEMII NAUK SSSR, 1971, 196 (02): : 259 - &