In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion

被引:2
|
作者
P.A.Morton [1 ,2 ]
H.C.Taylor [1 ,3 ]
L.E.Murr [1 ,3 ]
O.G.Delgado [1 ,2 ]
C.A.Terrazas [1 ,2 ]
R.B.Wicker [1 ,2 ]
机构
[1] W.M.Keck Center for 3D Innovation, The University of Texas at El Paso
[2] Department of Mechanical Engineering, The University of Texas at El Paso
[3] Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso
关键词
Ti-6Al-4V; TiN ceramic coatings and embedded layers; Dendritic microstructures; Selective laser melting; Additive manufacturing; Metal matrix composites; Selective nitriding;
D O I
暂无
中图分类号
TG665 [光能加工设备及其加工]; TG174.4 [金属表面防护技术];
学科分类号
080201 ; 080503 ;
摘要
Laser-assisted gas nitriding of selective Ti-6Al-4V surfaces has been achieved during laser powder bed fusion fabrication by exchanging the argon build gas environment with nitrogen. Systematic variation of processing parameters allowed microdendritic Ti N surface coatings to be formed having thicknesses ranging from a few tens of microns to several hundred microns, with TiN dendrite microstructure volume fractions ranging from 0.6 to 0.75; and corresponding Vickers microindentation hardness values ranging from ~7.5 GPa–9.5 GPa. Embedded TiN hard layers ranging from 50 μm to 150 μm thick were also fabricated in the laser-beam additively manufactured Ti-6Al-4V alloy producing prototype, hybrid, planar composites having alternating, ductile Ti-6Al-4V layers with a hardness of ~4.5 GPa and a stiff, TiN layer with a hardness of ~8.5 GPa. The results demonstrate prospects for fabricating novel, additively manufactured components having selective, hard, wear and corrosion resistant coatings along with periodic,planar or complex metal matrix composite regimes exhibiting superior toughness and related mechanical properties.
引用
收藏
页码:98 / 107
页数:10
相关论文
共 50 条
  • [31] Laser powder bed fusion of Ti-6Al-4V parts: Thermal modeling and mechanical implications
    Masoomi, Mohammad
    Thompson, Scott M.
    Shamsaei, Nima
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2017, 118 : 73 - 90
  • [32] Mechanical properties of Ti-6Al-4V thin walls fabricated by laser powder bed fusion
    Lee, Junghoon
    Hussain, Arif
    Ha, Jeonghong
    Kwon, Youngsam
    Kim, Rae Eon
    Kim, Hyoung Seop
    Kim, Dongsik
    ADDITIVE MANUFACTURING, 2024, 94
  • [33] Geometry Effect on Microstructure and Mechanical Properties in Laser Powder Bed Fusion of Ti-6Al-4V
    Munk, Juri
    Breitbarth, Eric
    Siemer, Tobias
    Pirch, Norbert
    Haefner, Constantin
    METALS, 2022, 12 (03)
  • [34] Ti-6Al-4V hollow-strut lattice materials by laser powder bed fusion
    Noronha, J.
    Rogers, J.
    Leary, M.
    Kyriakou, E.
    Inverarity, S. B.
    Das, R.
    Brandt, M.
    Qian, M.
    ADDITIVE MANUFACTURING, 2023, 72
  • [35] Microstructure and Mechanical Properties of Ti-6Al-4V In Situ Alloyed with 3 wt% Cr by Laser Powder Bed Fusion
    Goettgens, Valerie Sue
    Weber, Luca
    Braun, Jakob
    Kaserer, Lukas
    Letofsky-Papst, Ilse
    Mitsche, Stefan
    Schimbaeck, David
    Leichtfried, Gerhard
    METALS, 2024, 14 (06)
  • [36] Laser gas nitriding of Ti-6Al-4V .1. Optimization of the process
    Xue, L
    Islam, M
    Koul, AK
    Bibby, M
    Wallace, W
    ADVANCED PERFORMANCE MATERIALS, 1997, 4 (01): : 25 - 47
  • [37] Reduction of incandescent spatter with helium addition to the process gas during laser powder bed fusion of Ti-6Al-4V
    Pauzon, C.
    Hoppe, B.
    Pichler, T.
    Dubiez-Le Goff, S.
    Foret, P.
    Nguyen, T.
    Hryha, E.
    CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2021, 35 : 371 - 378
  • [38] TiN formed by laser gas alloying (LGA) of Ti-6Al-4V
    Pieters, RRGM
    Liu, S
    SURFACE ENGINEERING: SCIENCE AND TECHNOLOGY I, 1999, : 415 - 428
  • [39] Laser powder bed fusion processability of Ti-6Al-4V powder decorated by B4C particles
    Fereiduni, Eskandar
    Ghasemi, Ali
    Elbestawi, Mohamed
    Jadhav, Suraj Dinkar
    Vanmeensel, Kim
    MATERIALS LETTERS, 2021, 296
  • [40] In Situ Microstructure Modification Using a Layerwise Surface-Preheating Laser Scan of Ti-6Al-4V during Laser Powder Bed Fusion
    Tanrikulu, Ahmet Alptug
    Farhang, Behzad
    Ganesh-Ram, Aditya
    Hekmatjou, Hamidreza
    Durlov, Sadman Hafiz
    Amerinatanzi, Amirhesam
    MATERIALS, 2024, 17 (08)