Error estimates of H~1-Galerkin mixed finite element method for Schrdinger equation

被引:0
|
作者
LIU Yang1 LI Hong1 WANG Jin-feng2 1 School of Mathematical Sciences
机构
基金
中国国家自然科学基金;
关键词
H1-Galerkin mixed finite element method; Schrdinger equation; LBB condition; optimal error estimates;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
An H1-Galerkin mixed finite element method is discussed for a class of second order Schrdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条
  • [41] Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation
    Gudi, Thirupathi
    Nataraj, Neela
    Pani, Amiya K.
    JOURNAL OF SCIENTIFIC COMPUTING, 2008, 37 (02) : 139 - 161
  • [42] Optimal a priori error estimate of relaxation-type linear finite element method for nonlinear Schr?dinger equation
    Liu, Huini
    Yi, Nianyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 428
  • [43] Unconditionally superconvergence error analysis of an energy-stable finite element method for Schrödinger equation with cubic nonlinearity
    Yang, Huaijun
    Jia, Xu
    Yang, Jinjin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [44] An H1-Galerkin Mixed Finite Element Approximation of a Nonlocal Hyperbolic Equation
    Chen, Fengxin
    Zhou, Zhaojie
    MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (05) : 643 - 653
  • [45] SPACE-TIME FINITE ELEMENT METHOD FOR SCHRDINGER EQUATION AND ITS CONSERVATION
    汤琼
    陈传淼
    刘罗华
    AppliedMathematicsandMechanics(EnglishEdition), 2006, (03) : 335 - 340
  • [46] Space-time finite element method for schrödinger equation and its conservation
    Qiong Tang
    Chuan-miao Chen
    Luo-hua Liu
    Applied Mathematics and Mechanics, 2006, 27 : 335 - 340
  • [47] Galerkin finite element method and error analysis for the fractional cable equation
    P. Zhuang
    F. Liu
    I. Turner
    V. Anh
    Numerical Algorithms, 2016, 72 : 447 - 466
  • [48] A priori and a posteriori error estimates of H1-Galerkin mixed finite element methods for elliptic optimal control problems
    Hou, Tianliang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (10) : 2542 - 2554
  • [49] Galerkin finite element method and error analysis for the fractional cable equation
    Zhuang, P.
    Liu, F.
    Turner, I.
    Anh, V.
    NUMERICAL ALGORITHMS, 2016, 72 (02) : 447 - 466
  • [50] A priori error estimates for a mixed finite element discretization of the Richards’ equation
    Eckhard Schneid
    Peter Knabner
    Florin Radu
    Numerische Mathematik, 2004, 98 : 353 - 370