INTERIOR PENALTY BILINEAR IFE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENT

被引:0
|
作者
Xiaoming HE·Tao LIN Department of Mathematics
Department of Mathematical and Statistics Science
机构
基金
加拿大自然科学与工程研究理事会;
关键词
Adaptive mesh; discontinuous Galerkin; immersed interface; interface problems; penalty;
D O I
暂无
中图分类号
O175.25 [椭圆型方程];
学科分类号
070104 ;
摘要
This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuousGalerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient.A discontinuous bilinear IFE space is constructed and applied to both the symmetric and nonsymmetricinterior penalty DG formulations.The new methods can solve an interface problem on a Cartesianmesh independent of the interface with local refinement at any locations needed even if the interfacehas a nontrivial geometry.Numerical examples are provided to show features of these methods.
引用
收藏
页码:467 / 483
页数:17
相关论文
共 50 条
  • [31] Discontinuous Galerkin methods for elliptic problems
    Arnold, DN
    Brezzi, F
    Cockburn, B
    Marini, D
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 89 - 101
  • [32] QUASI-OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS. III - DISCONTINUOUS GALERKIN AND OTHER INTERIOR PENALTY METHODS
    Veeser, Andreas
    Zanotti, Pietro
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (05) : 2871 - 2894
  • [33] Interior Penalty Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations
    Dosopoulos, Stylianos
    Lee, Jin-Fa
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3512 - 3515
  • [34] DIVERGENCE-CONFORMING DISCONTINUOUS GALERKIN METHODS AND C0 INTERIOR PENALTY METHODS
    Kanschat, Guido
    Sharma, Natasha
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) : 1822 - 1842
  • [35] CONVERGENCE ANALYSIS OF AN ADAPTIVE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD
    Hoppe, R. H. W.
    Kanschat, G.
    Warburton, T.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 534 - 550
  • [36] Discontinuous Galerkin methods for elliptic partial differential equations with random coefficients
    Liu, Kun
    Riviere, Beatrice M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (11) : 2477 - 2490
  • [37] Interior penalty discontinuous Galerkin FEMs for a gradient beam and CNTs
    Eptaimeros, K. G.
    Koutsoumaris, C. Chr.
    Tsamasphyros, G. J.
    APPLIED NUMERICAL MATHEMATICS, 2019, 144 : 118 - 139
  • [38] NEW INTERIOR PENALTY DISCONTINUOUS GALERKIN METHODS FOR THE KELLER-SEGEL CHEMOTAXIS MODEL
    Epshteyn, Yekaterina
    Kurganov, Alexander
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 386 - 408
  • [39] INTERIOR PENALTY DISCONTINUOUS GALERKIN FEM FOR THE p(x)-LAPLACIAN
    Del Pezzo, Leandro M.
    Lombardi, Ariel L.
    Martinez, Sandra
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2497 - 2521
  • [40] Multigrid algorithms for -version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes
    Antonietti, P. F.
    Houston, P.
    Hu, X.
    Sarti, M.
    Verani, M.
    CALCOLO, 2017, 54 (04) : 1169 - 1198