MIXED FINITE ELEMENT METHODS FOR A STRONGLYNONLINEAR PARABOLIC PROBLEM

被引:0
|
作者
Yan-ping Chen(Department of Mathematics
Institute ofComputational and Applied Mathematics
机构
关键词
Finite element method; Nonlinear parabolic problem;
D O I
暂无
中图分类号
O241.8 [微分方程、积分方程的数值解法];
学科分类号
070102 ;
摘要
A mixed finite element method is developed to approximate the solution of astrongly nonlinear second-order parabolic problem. The existence and uniquenessof the approximation airs demonstrated and L2-error estimates are established forboth the scalar function and the flux. Results are given for the continuous-timecase.
引用
收藏
页码:209 / 220
页数:12
相关论文
共 50 条
  • [21] Superconvergence of mixed finite element methods for parabolic problems with nonsmooth initial data
    Hongsen Chen
    Richard Ewing
    Raytcho Lazarov
    Numerische Mathematik, 1998, 78 : 495 - 521
  • [22] Superconvergence of mixed finite element methods for parabolic problems with nonsmooth initial data
    Chen, HS
    Ewing, R
    Lazarov, R
    NUMERISCHE MATHEMATIK, 1998, 78 (04) : 495 - 521
  • [23] Least-squares mixed finite element methods for nonlinear parabolic problems
    Yang, DP
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2002, 20 (02) : 153 - 164
  • [24] Fully Discrete Interpolation Coefficients Mixed Finite Element Methods for Semi-Linear Parabolic Optimal Control Problem
    Wang, Jing
    Lu, Zuliang
    Cai, Fei
    Feng, Yuming
    IEEE ACCESS, 2022, 10 : 54291 - 54300
  • [25] Mixed finite element methods
    Duran, Ricardo G.
    MIXED FINITE ELEMENTS, COMPATIBILITY CONDITIONS, AND APPLICATIONS, 2008, 1939 : 1 - 44
  • [26] Parallel split least-squares mixed finite element method for parabolic problem
    Zhang, Jiansong
    Liu, Zhaohui
    Yang, Danping
    Zhu, Jiang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (04) : 1282 - 1300
  • [27] MULTIGRID FOR THE MORTAR FINITE ELEMENT FOR PARABOLIC PROBLEM
    Xue-jun Xu(LSEC
    JournalofComputationalMathematics, 2003, (04) : 411 - 420
  • [28] Finite element approximation of nonlocal parabolic problem
    Chaudhary, Sudhakar
    Srivastava, Vimal
    Kumar, V. V. K. Srinivas
    Srinivasan, Balaji
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (03) : 786 - 813
  • [29] Multigrid for the mortar finite element for parabolic problem
    Xu, XJ
    Chen, JR
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2003, 21 (04) : 411 - 420
  • [30] A novel arbitrary Lagrangian-Eulerian finite element method for a parabolic mixed parabolic moving interface problem
    Lan, Rihui
    Sun, Pengtao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 383