Stationary Probability and First-Passage Time of Biased Random Walk

被引:0
|
作者
李井文 [1 ]
唐沈立 [1 ]
徐新平 [1 ]
机构
[1] School of Physical Science and Technology, Soochow University
基金
中国国家自然科学基金;
关键词
random walk; biased random walk; first-passage time; stationary probability;
D O I
暂无
中图分类号
O211 [概率论(几率论、或然率论)];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the stationary probability and first-passage time of biased random walk on 1D chain, where at each step the walker moves to the left and right with probabilities p and q respectively(0 p, q 1,p + q = 1). We derive exact analytical results for the stationary probability and first-passage time as a function of p and q for the first time. Our results suggest that the first-passage time shows a double power-law F;, where the exponent γ = 2 for N < |p-q|;and γ = 1 for N > |p-q|;. Our study sheds useful insights into the biased random-walk process.
引用
收藏
页码:330 / 334
页数:5
相关论文
共 50 条
  • [21] Walk-on-Hemispheres first-passage algorithm
    Jinseong Son
    Dongheyon Shin
    Chi-Ok Hwang
    Scientific Reports, 13
  • [22] Walk-on-Hemispheres first-passage algorithm
    Son, Jinseong
    Shin, Dongheyon
    Hwang, Chi-Ok
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [23] DISTRIBUTION OF THE FIRST-PASSAGE TIME OF MAST ANTENNA STRUCTURES TO NON-STATIONARY RANDOM EXCITATION.
    To, C.W.S.
    Journal of Sound and Vibration, 1986, 108 (01) : 11 - 23
  • [24] Mean first-passage time for random walks on undirected networks
    Zhongzhi Zhang
    Alafate Julaiti
    Baoyu Hou
    Hongjuan Zhang
    Guanrong Chen
    The European Physical Journal B, 2011, 84 : 691 - 697
  • [25] On the first passage time of a simple random walk on a tree
    Bapat, R. B.
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (10) : 1552 - 1558
  • [26] FIRST-PASSAGE APPROXIMATION IN RANDOM VIBRATION
    RACICOT, RL
    MOSES, F
    MECHANICAL ENGINEERING, 1971, 93 (05) : 58 - &
  • [27] First-passage percolation on the random graph
    van der Hofstad, R
    Hooghiemstra, G
    Van Mieghem, P
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2001, 15 (02) : 225 - 237
  • [28] FIRST-PASSAGE APPROXIMATION IN RANDOM VIBRATION
    RACICOT, RL
    MOSES, F
    JOURNAL OF APPLIED MECHANICS, 1971, 38 (01): : 143 - &
  • [29] First-passage time distribution for a random walker on a random forcing energy landscape
    Sheinman, Michael
    Benichou, Olivier
    Voituriez, Raphael
    Kafri, Yariv
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [30] Mean first-passage time for random walks on random growth tree networks
    Ma, Fei
    Wang, Ping
    PHYSICAL REVIEW E, 2022, 105 (01)