A Refined Non-Asymptotic Tail Bound of Sub-Gaussian Matrix

被引:0
|
作者
Xianjie GAO [1 ]
Chao ZHANG [1 ]
Hongwei ZHANG [1 ]
机构
[1] School of Mathematical Sciences, Dalian University of Technology
基金
中央高校基本科研业务费专项资金资助;
关键词
D O I
暂无
中图分类号
O151.21 [矩阵论];
学科分类号
摘要
In this paper, we obtain a refined non-asymptotic tail bound for the largest singular value(the soft edge) of sub-Gaussian matrix. As an application, we use the obtained theorem to compute the tail bound of the Gaussian Toeplitz matrix.
引用
收藏
页码:543 / 550
页数:8
相关论文
共 50 条
  • [31] Asymptotic freeness for rectangular random matrices and large deviations for sample covariance matrices with sub-Gaussian tails
    Groux, Benjamin
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [32] NON-ASYMPTOTIC PERFORMANCE BOUNDS OF EIGENVALUE BASED DETECTION OF SIGNALS IN NON-GAUSSIAN NOISE
    Heimann, Ron
    Leshem, Amir
    Zehavi, Ephraim
    Weiss, Anthony J.
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2936 - 2940
  • [33] Non-asymptotic error controlled sparse high dimensional precision matrix estimation
    Kashlak, Adam B.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 181
  • [34] Kaspi Problem Revisited: Non-Asymptotic Converse Bound and Second-Order Asymptotics
    Zhou, Lin
    Motani, Mehul
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,
  • [35] Non-asymptotic analysis of quantum metrology protocols beyond the Cramer-Rao bound
    Rubio, Jesus
    Knott, Paul
    Dunningham, Jacob
    JOURNAL OF PHYSICS COMMUNICATIONS, 2018, 2 (01):
  • [36] Non-asymptotic bounds for probailities of the rank of a random matrix over a finite field
    Alekseychuk, A. N.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2007, 17 (03): : 269 - 278
  • [37] Non-asymptotic Error Bound for Optimal Prediction of Function-on-Function Regression by RKHS Approach
    Tong, Hong Zhi
    Hu, Ling Fang
    Ng, Michael
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (04) : 777 - 796
  • [38] Non-asymptotic Error Bound for Optimal Prediction of Function-on-Function Regression by RKHS Approach
    Hong Zhi Tong
    Ling Fang Hu
    Michael Ng
    Acta Mathematica Sinica, English Series, 2022, 38 : 777 - 796
  • [39] Non-asymptotic approximations of Gaussian neural networks via second-order Poincare inequalities
    Bordino, Alberto
    Favaro, Stefano
    Fortini, Sandra
    SYMPOSIUM ON ADVANCES IN APPROXIMATE BAYESIAN INFERENCE, 2024, 253 : 45 - 78
  • [40] Non-asymptotic Error Bound for Optimal Prediction of Function-on-Function Regression by RKHS Approach
    Hong Zhi TONG
    Ling Fang HU
    Michael NG
    Acta Mathematica Sinica,English Series, 2022, (04) : 777 - 796