Canonical Foliations of Certain Classes of Almost Contact Metric Structures

被引:0
|
作者
Tae Wan KIM [1 ]
Hong Kyung PAK [2 ]
机构
[1] Department of Mathematics Education,Silla University,Pusan,617-736.Korea
[2] Department of Computer and Information Security,Daegu Haany University,
关键词
Almost α-cosymplectic manifold; Almost cosymplectic manifold; Almost Kemmotsu manifold; Semi-invariant submanifold;
D O I
暂无
中图分类号
O186.12 [黎曼几何];
学科分类号
070104 ;
摘要
The purpose of this paper is to study the canonical foliations of an almost cosymplecticor almost Kenmotsu manifold M in a unified way.We prove that the canonical foliation definedby the contact distribution is Riemannian and tangentially almost K hler of codimension 1 and that is tangentially K hler if the manifold M is normal.Furthermore,we show that a semi-invariantsubmanifotd N of such a manifold M admits a canonical foliationwhich is defined by the anti-invariant distribution and a canonical cohomology class c(N) generated by a transversal volume formfor.In addition,we investigate the conditions when the even-dimensional cohomology classes ofN are non-trivial.Finally,we compute the Godbillon-Vey class for.
引用
收藏
页码:841 / 846
页数:6
相关论文
共 50 条
  • [41] Contactly geodesic transformations of almost-contact metric structures
    V. F. Kirichenko
    N. N. Dondukova
    Mathematical Notes, 2006, 80 : 204 - 213
  • [42] CURVATURE PROPERTIES ON SOME CLASSES OF ALMOST CONTACT MANIFOLDS WITH B-METRIC
    Manev, Mancho
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2012, 65 (03): : 283 - 290
  • [43] On deformations of parallel G2 structures and almost contact metric structures
    Aktay, Sirin
    ADVANCES IN GEOMETRY, 2017, 17 (03) : 293 - 302
  • [44] A NATURAL CONNECTION ON SOME CLASSES OF ALMOST CONTACT MANIFOLDS WITH B-METRIC
    Manev, Mancho
    Ivanova, Miroslava
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2012, 65 (04): : 429 - 436
  • [45] STABILITY OF INVARIANT FOLIATIONS ON ALMOST CONTACT MANIFOLDS
    CHINEA, D
    DELEON, M
    MARRERO, JC
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1993, 43 (1-2): : 41 - 52
  • [46] Almost Contact Metric Structures Defined by Connection over Distribution with Admissible Finslerian Metric
    Bukusheva, A. V.
    Galaev, S. V.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2012, 12 (03): : 17 - 22
  • [47] On Generalized D-Conformal Deformations of Certain Almost Contact Metric Manifolds
    Ozdemir, Nulifer
    Aktay, Sirin
    Solgun, Mehmet
    MATHEMATICS, 2019, 7 (02)
  • [48] Generalized m-Quasi-Einstein Metric on Certain Almost Contact Manifolds
    Singh, Jay Prakash
    Khatri, Mohan
    FILOMAT, 2022, 36 (20) : 6991 - 6999
  • [49] Almost Contact Metric Structures Defined by a Symplectic Structure Over a Distribution
    Galaev, S., V
    Shevtsova, Yu, V
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2015, 15 (02): : 136 - 141
  • [50] The Structure of Some Classes of 3-Dimensional Normal Almost Contact Metric Manifolds
    De, Uday Chand
    Mondal, Abul Kalam
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (02) : 501 - 509