EXTENSIONS OF APPELL'S AND TZENOFF'S EQUATIONS TO GENERAL NONHOLONOMIC SYSTEMS

被引:0
|
作者
Xue Wenxi Xi’an Mining Institute
机构
关键词
general nonholonomic system; Appell’s equation; Tzènoffs equation; variational principle; Gauss principle;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present a new variational principle,from which Gauss principle can bederived as a corollary.By using the new principle,Appell’s and Tzènoffs equations are extended tononholonomic systems of any order.As an example,a second order nonholonomic system is given to illustratethe application of the equations obtained.
引用
收藏
页码:354 / 362
页数:9
相关论文
共 50 条
  • [31] MATRIX EQUATIONS FOR NONHOLONOMIC SYSTEMS
    VELICHENKO, VV
    DOKLADY AKADEMII NAUK SSSR, 1991, 321 (03): : 499 - 504
  • [32] Lie symmetry and approximate Hojman conserved quantity of Appell equations for a weakly nonholonomic system
    Han, Yuelin
    Wang, Xiaoxiao
    Zhang, Meiling
    Jia, Liqun
    NONLINEAR DYNAMICS, 2013, 71 (03) : 401 - 408
  • [33] Lie symmetry and approximate Hojman conserved quantity of Appell equations for a weakly nonholonomic system
    Yuelin Han
    Xiaoxiao Wang
    Meiling Zhang
    Liqun Jia
    Nonlinear Dynamics, 2013, 71 : 401 - 408
  • [34] Special Lie symmetry and Hojman conserved quantity of Appell equations for a Chetaev nonholonomic system
    Yuelin Han
    Xiaoxiao Wang
    Meiling Zhang
    Liqun Jia
    Nonlinear Dynamics, 2013, 73 : 357 - 361
  • [35] Symmetry and conserved quantity of Tzenoff equations for holonomic systems with redundant coordinates
    Zheng, Shi-Wang
    Xie, Jia-Fang
    Jia, Li-Qun
    CHINESE PHYSICS LETTERS, 2006, 23 (11) : 2924 - 2927
  • [36] Special Mei symmetry and approximate conserved quantity of Appell equations for a weakly nonholonomic system
    Liqun Jia
    Xiaoxiao Wang
    Meiling Zhang
    Yuelin Han
    Nonlinear Dynamics, 2012, 69 : 1807 - 1812
  • [37] Inverse problem for Chaplygin's nonholonomic systems
    Liu Chang
    Liu ShiXing
    Guo YongXin
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2011, 54 (08) : 2100 - 2106
  • [38] Inverse problem for Chaplygin’s nonholonomic systems
    Chang Liu
    ShiXing Liu
    YongXin Guo
    Science China Technological Sciences, 2011, 54 : 2100 - 2106
  • [39] Special Lie symmetry and Hojman conserved quantity of Appell equations for a Chetaev nonholonomic system
    Han, Yuelin
    Wang, Xiaoxiao
    Zhang, Meiling
    Jia, Liqun
    NONLINEAR DYNAMICS, 2013, 73 (1-2) : 357 - 361
  • [40] Special Mei symmetry and approximate conserved quantity of Appell equations for a weakly nonholonomic system
    Jia, Liqun
    Wang, Xiaoxiao
    Zhang, Meiling
    Han, Yuelin
    NONLINEAR DYNAMICS, 2012, 69 (04) : 1807 - 1812