The homotopic mapping solution for the solitary wave for a generalized nonlinear evolution equation

被引:0
|
作者
莫嘉琪 [1 ,2 ,3 ]
林苏榕 [4 ]
机构
[1] Department of Mathematics,Anhui Normal University
[2] Department of Mathematics,Huzhou Teachers College
[3] Division of Computational Science,E-Institutes of Shanghai Universities at SJTU
[4] Department of Computer,Fujian Radio and TV University
基金
中国国家自然科学基金;
关键词
evolution equation; nonlinear; soliton; approximate method;
D O I
暂无
中图分类号
O175 [微分方程、积分方程]; O411.1 [数学物理方法];
学科分类号
070104 ; 0701 ;
摘要
This paper studies a generalized nonlinear evolution equation.Using the homotopic mapping method,it constructs a corresponding homotopic mapping transform.Selecting a suitable initial approximation and using homotopic mapping,it obtains an approximate solution with an arbitrary degree of accuracy for the solitary wave.From the approximate solution obtained by using the homotopic mapping method,it possesses a good accuracy.
引用
收藏
页码:3628 / 3631
页数:4
相关论文
共 50 条
  • [21] Solitary wave solutions for the generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation
    Seadawy, Aly R.
    Lu, Dianchen
    Khater, Mostafa M. A.
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2017, 2 (02) : 137 - 142
  • [22] Accessible solitary wave families of the generalized nonlocal nonlinear Schrodinger equation
    Zhong, W. -P.
    Belic, M.
    Huang, T. W.
    Xie, R. H.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 59 (02): : 301 - 304
  • [23] Exact solitary and periodic wave solutions for a generalized nonlinear Schrodinger equation
    Sun, Chengfeng
    Gao, Hongjun
    CHAOS SOLITONS & FRACTALS, 2009, 39 (05) : 2399 - 2410
  • [25] The solitary traveling wave solution for a class of nonlinear evolution equations
    Shi Lan-Fang
    Zhu Min
    Zhou Xian-Chun
    Wang Wei-Gang
    Mo Jia-Qi
    ACTA PHYSICA SINICA, 2014, 63 (13)
  • [26] Solitary wave approximate solution of strongly nonlinear evolution equations
    Department of Mathematics, Anhui Normal University, Wuhu 241000, China
    不详
    Wuli Xuebao, 2007, 4 (1843-1846):
  • [27] The solitary wave approximate solution of strongly nonlinear evolution equations
    Mo Jia-Qi
    Zhang Wei-Jiang
    He Ming
    ACTA PHYSICA SINICA, 2007, 56 (04) : 1843 - 1846
  • [28] Homotopic mapping solution of soliton for a class of disturbed Burgers equation
    Shi Lan-Fang
    Zhou Xian-Chun
    ACTA PHYSICA SINICA, 2010, 59 (05) : 2915 - 2918
  • [29] Soliton-like homotopic approximate analytic solution for a class of disturbed nonlinear evolution equation
    Shi Lan-Fang
    Mo Jia-Qi
    ACTA PHYSICA SINICA, 2009, 58 (12) : 8123 - 8126
  • [30] Generalized nonlinear Schrodinger equation: Conservation of energy and solitary-wave solutions
    Rego-Monteiro, M. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (05)