POWER VARIATION OF SUBFRACTIONAL BROWNIAN MOTION AND APPLICATION

被引:0
|
作者
申广君 [1 ]
闫理坦 [2 ]
刘俊峰 [3 ]
机构
[1] Department of Mathematics, Anhui Normal University
[2] Department of Mathematics, Donghua University
[3] School of Mathematics and Statistics, Nanjing Audit University
基金
中国国家自然科学基金;
关键词
subfractional Brownian motion; power variation; strongly consistent;
D O I
暂无
中图分类号
O211.6 [随机过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper,we consider the power variation of subfractional Brownian motion.As an application,we introduce a class of estimators for the index of a subfractional Brownian motion and show that they are strongly consistent.
引用
收藏
页码:901 / 912
页数:12
相关论文
共 50 条
  • [41] From Brownian motion to power of fluctuations
    Berche, Bertrand
    Holovko, Myroslav
    Trokhymchuk, Andrij
    Vlachy, Vojko
    CONDENSED MATTER PHYSICS, 2012, 15 (04)
  • [42] Singularity of Subfractional Brownian Motions with Different Hurst Indices
    Rao, B. L. S. Prakasa
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2012, 30 (03) : 538 - 542
  • [43] On Collision Local Time of Two Independent Subfractional Brownian Motions
    Guo, Jingjun
    Xiao, Yanping
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2015, 109 (06): : 519 - 536
  • [44] Spectral characterization of the quadratic variation of mixed Brownian-fractional Brownian motion
    Azmoodeh E.
    Valkeila E.
    Statistical Inference for Stochastic Processes, 2013, 16 (2) : 97 - 112
  • [45] The quadratic variation for mixed-fractional Brownian motion
    Gao, Han
    He, Kun
    Yan, Litan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [46] The quadratic variation for mixed-fractional Brownian motion
    Han Gao
    Kun He
    Litan Yan
    Journal of Inequalities and Applications, 2016
  • [47] On almost sure convergence of the quadratic variation of Brownian motion
    Levental, S
    Erickson, RV
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 106 (02) : 317 - 333
  • [48] On collision local time of two independent Subfractional Brownian motions
    Guo, Jingjun
    Xiao, Yanping
    CMES - Computer Modeling in Engineering and Sciences, 2015, 109 (06): : 519 - 536
  • [49] Weighted power variations of iterated Brownian motion
    Nourdin, Ivan
    Peccati, Giovanni
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1229 - 1256
  • [50] A particular application of Brownian motion to sequential analysis
    Hubert, SL
    Pyke, R
    STATISTICA SINICA, 1997, 7 (01) : 109 - 126