This paper proposes a Bayesian semiparametric accelerated failure time model for doubly censored data with errors-in-covariates. The authors model the distributions of the unobserved covariates and the regression errors via the Dirichlet processes. Moreover, the authors extend the Bayesian Lasso approach to our semiparametric model for variable selection. The authors develop the Markov chain Monte Carlo strategies for posterior calculation. Simulation studies are conducted to show the performance of the proposed method. The authors also demonstrate the implementation of the method using analysis of PBC data and ACTG 175 data.
机构:
Yonsei Univ, 50 Yonsei Ro, Seoul, South Korea
Yonsei Univ, Dept Stat & Data Sci, 50 Yonsei Ro, Seoul, South KoreaYonsei Univ, 50 Yonsei Ro, Seoul, South Korea
Kim, Kyuhyun
Ko, Jungyeol
论文数: 0引用数: 0
h-index: 0
机构:
Yonsei Univ, 50 Yonsei Ro, Seoul, South KoreaYonsei Univ, 50 Yonsei Ro, Seoul, South Korea
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210046, Peoples R China
Zhou, Xiuqing
Shi, Ningzhong
论文数: 0引用数: 0
h-index: 0
机构:
NE Normal Univ, KLAS, Changchun, Peoples R China
NE Normal Univ, Sch Math & Stat, Changchun, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210046, Peoples R China