MEAN APPROXIMATION BY DILATATIONS IN BERGMAN SPACES ON THE UPPER HALF-PLANE

被引:0
|
作者
Ali ABKAR [1 ]
机构
[1] Department of Pure Mathematics,Faculty of Science,Imam Khomeini International University
关键词
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
We study sufficient conditions on radial and non-radial weight functions on the upper half-plane that guarantee norm approximation of functions in weighted Bergman,weighted Dirichlet,and weighted Besov spaces on the upper half-plane by dilatations and eventually by analytic polynomials.
引用
收藏
页码:2204 / 2214
页数:11
相关论文
共 50 条
  • [21] Difference of composition operators on the weighted Bergman spaces over the half-plane
    Pang, Changbao
    Wang, Zhiyu
    Li, Yan
    Zhao, Liankuo
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (03)
  • [22] TOEPLITZ OPERATORS BETWEEN WEIGHTED BERGMAN SPACES OVER THE HALF-PLANE
    冯丽霞
    李艳
    王志宇
    赵连阔
    Acta Mathematica Scientia, 2024, 44 (05) : 1707 - 1720
  • [23] Difference of composition operators on weighted Bergman spaces over the half-plane
    Maocai Wang
    Changbao Pang
    Journal of Inequalities and Applications, 2016
  • [24] BLOCH-TYPE SPACES ON THE UPPER HALF-PLANE
    Fu, Xi
    Zhang, Junding
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) : 1337 - 1346
  • [25] Isometric embeddings of the spaces KΘ in the upper half-plane
    Baranov A.
    Journal of Mathematical Sciences, 2001, 105 (5) : 2319 - 2329
  • [26] On Toeplitz Operators on the Weighted Harmonic Bergman Space on the Upper Half-Plane
    Maribel Loaiza
    Carmen Lozano
    Complex Analysis and Operator Theory, 2015, 9 : 139 - 165
  • [27] On Toeplitz Operators on the Weighted Harmonic Bergman Space on the Upper Half-Plane
    Loaiza, Maribel
    Lozano, Carmen
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (01) : 139 - 165
  • [28] Integral representation of angular operators on the Bergman space over the upper half-plane
    Bais, Shubham R.
    Naidu, D. Venku
    NEW YORK JOURNAL OF MATHEMATICS, 2024, 30 : 42 - 57
  • [29] Integral representation of vertical operators on the Bergman space over the upper half-plane
    Bais, Shubham R.
    Naidu, D. Venku
    Mohan, Pinlodi
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 1593 - 1604
  • [30] The Hadamard-Bergman Convolution on the Half-Plane
    Karapetyants, Alexey
    Vagharshakyan, Armen
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2024, 30 (04)