Large Deviation Principle for a Form of Compound Nonhomogeneous Poisson Process

被引:0
|
作者
杨文权 [1 ]
胡亦钧 [2 ]
机构
[1] School of Mathematics and Computer Science, Jianghan University
[2] School of Mathematics and Statistics, Wuhan University
基金
中国国家自然科学基金;
关键词
large deviation principle; compound Poisson process; weak convergence;
D O I
10.19884/j.1672-5220.2011.02.022
中图分类号
O211.6 [随机过程];
学科分类号
摘要
By the Cramér method, the large deviation principle for a form of compound Poisson process S(t)=∑N(t)i=1h(t-Si)Xi is obtained,where N(t), t>0, is a nonhomogeneous Poisson process with intensity λ(t)>0, Xi, i≥1, are i.i.d. nonnegative random variables independent of N(t), and h(t), t>0, is a nonnegative monotone real function. Consequently, weak convergence for S(t) is also obtained.
引用
收藏
页码:217 / 221
页数:5
相关论文
共 50 条
  • [21] A nonhomogeneous Poisson process geostatistical model
    Fidel Ernesto Castro Morales
    Lorena Vicini
    Luiz K. Hotta
    Jorge A. Achcar
    Stochastic Environmental Research and Risk Assessment, 2017, 31 : 493 - 507
  • [22] CHARACTERISTIC FUNCTIONAL OF A NONHOMOGENEOUS POISSON PROCESS
    SCOTT, M
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (10): : 1164 - &
  • [23] Large deviation principle for reflected Poisson driven stochastic differential equations in epidemic models
    Pardoux, Etienne
    Samegni-Kepgnou, Brice
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (05) : 836 - 864
  • [24] LARGE DEVIATION PRINCIPLE FOR MULTIDIMENSIONAL FIRST COMPOUND RENEWAL PROCESSES IN THE PHASE SPACE
    Mogulskii, Anatolii Alfredovich
    Prokopenko, Evgenii Igorevich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 1464 - 1477
  • [25] LARGE DEVIATION PRINCIPLE FOR MULTIDIMENSIONAL SECOND COMPOUND RENEWAL PROCESSES IN THE PHASE SPACE
    Mogulskii, Anatolii Alfredovich
    Prokopenko, Evgenii Igorevich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 1478 - 1492
  • [26] CRITERION FOR THE LARGE DEVIATION PRINCIPLE
    CEGLA, W
    KLIMEK, M
    PROCEEDINGS OF THE ROYAL IRISH ACADEMY SECTION A-MATHEMATICAL AND PHYSICAL SCIENCES, 1990, 90 (01) : 5 - 10
  • [27] COMPOUND POISSON PROCESS WITH A POISSON SUBORDINATOR
    Di Crescenzo, Antonio
    Martinucci, Barbara
    Zacks, Shelemyahu
    JOURNAL OF APPLIED PROBABILITY, 2015, 52 (02) : 360 - 374
  • [28] A TIGHTNESS PROPERTY OF A SYMMETRIC MARKOV PROCESS AND THE UNIFORM LARGE DEVIATION PRINCIPLE
    Takeda, Masayoshi
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (12) : 4371 - 4383
  • [29] LIMIT THEOREMS FOR THE FRACTIONAL NONHOMOGENEOUS POISSON PROCESS
    Leonenko, Nikolai
    Scalas, Enrico
    TRlNH, Mailan
    JOURNAL OF APPLIED PROBABILITY, 2019, 56 (01) : 246 - 264
  • [30] Spatial nonhomogeneous poisson process in corrosion management
    De La Cruz, J. Lopez
    Kuniewski, S. P.
    Van Noortwijk, J. M.
    Gutierrez, M. A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (08) : C396 - C406