Parameters effects on spiking deconvolution of land seismic data

被引:1
|
作者
MOHAMED Mhmod [1 ]
FENG Xuan [1 ]
XU Cong [2 ]
机构
[1] College of Geo-Exploration Science and Technology,Jilin University
[2] Baixian Company,Northeast Electric Power Design Institute Co.,Ltd.of China Power Engineering Consulting Group
关键词
spiking deconvolution; prewhitening; operator length; PSTM data;
D O I
暂无
中图分类号
P631.4 [地震勘探];
学科分类号
摘要
Spiking deconvolution is a standard Wiener Levinson algorithm. The autocorrelation of the design time gate is computed and there is a specified taper on the design gate before the autocorrelation is done. The standard equations are set up,prewhitening is added to the zero lag value of the autocorrelation and the matrix is inverted to derive the spiking operator. In this study,the authors describe a technique for performing spiking deconvolution on prestack time migration( PSTM) data,to test the effect of operator length and percent prewhitening in spiking deconvolution and apply spiking deconvolution trace by trace,with operator lengths 15 ms,10 ms and 5 ms when percent prewhitening 0%,40 ms and 60 ms for percent prewhitening 1%. The results show when prewhitening is 0% the shorter operator gives better results,but when value of prewhitening is bigger than 0% it is better to use longer operator lengths.
引用
收藏
页码:226 / 231
页数:6
相关论文
共 50 条
  • [41] Effects of magnitude accuracy and complete-ness data on seismic hazard parameters
    邵辉成
    谢家树
    王平
    王亚秀
    Acta Seismologica Sinica(English Edition), 1996, (04) : 99 - 108
  • [42] ICA with Homomorphic Deconvolution Based Seismic Blind Deconvolution
    Gao Wei
    Liu Huaishan
    Zhang Jin
    2009 INTERNATIONAL FORUM ON COMPUTER SCIENCE-TECHNOLOGY AND APPLICATIONS, VOL 2, PROCEEDINGS, 2009, : 421 - 424
  • [43] Quality control of surface-consistent deconvolution on land dynamite data
    Zhang, Jingfeng
    Klemm, Carlyn
    Michell, Scott
    Gangopadhyay, Abhijit
    Mei, Jiawei
    Connor, Jeff
    Ahmed, Shoaib
    Leading Edge, 2015, 34 (04): : 430 - 436
  • [44] A Deep-Learning-Based Generalized Convolutional Model For Seismic Data and Its Application in Seismic Deconvolution
    Gao, Zhaoqi
    Hu, Sichao
    Li, Chuang
    Chen, Hongling
    Jiang, Xiudi
    Pan, Zhibin
    Gao, Jinghuai
    Xu, Zongben
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [45] Seismic interferometry using multidimensional deconvolution and crosscorrelation for crosswell seismic reflection data without borehole sources
    Minato, Shohei
    Matsuoka, Toshifumi
    Tsuji, Takeshi
    Draganov, Deyan
    Hunziker, Jurg
    Wapenaar, Kees
    GEOPHYSICS, 2011, 76 (01) : SA19 - SA34
  • [46] Marchenko imaging assisted by vertical seismic profiling data for land seismic data in the Middle East
    Cheng, Liwei
    Tura, Ali
    Simmons, James
    Snieder, Roel
    Angelov, Petar Vladov
    Srinivasa, Rao Narhari
    Akther, Shamima
    GEOPHYSICS, 2024, 89 (02) : B105 - B117
  • [47] OPTIMAL SEISMIC DECONVOLUTION - COMMENT
    MENDEL, JM
    SIGNAL PROCESSING, 1989, 18 (04) : 447 - 448
  • [48] On seismic deghosting by spatial deconvolution
    Amundsen, Lasse
    Zhou, Hongbo
    Reitan, Arne
    Weglein, Arthur B.
    GEOPHYSICS, 2013, 78 (06) : V267 - V271
  • [49] DECONVOLUTION STUDY OF P-WAVE LAND SEISMIC SOURCE SIGNATURE FROM A DOWNHOLE ARRAY
    LIU, CY
    GEOPHYSICS, 1986, 51 (02) : 490 - 490
  • [50] Deconvolution of the PSF of a seismic lens
    Yu, JH
    Wang, Y
    Schuster, GT
    IMAGE RECONSTRUCTION FROM INCOMPLETE DATA II, 2002, 4792 : 135 - 145