Representations of q-oscillator algebra at a root of 1

被引:0
|
作者
侯伯宇
侯伯元
许连超
周善有
机构
[1] Bejing 100039
[2] China
[3] Department of Mathematics
[4] Department of Physics
[5] Graduate School
[6] Institute of Modern Physics
[7] Northwest University
[8] University of Science and Technology of China Beijing 100039
[9] Xi’an 710069
[10] the chinese Academy of Science
基金
中国国家自然科学基金;
关键词
q-oscillator algebra; central subalgebra;
D O I
暂无
中图分类号
O153 [抽象代数(近世代数)];
学科分类号
070104 ;
摘要
This paper deals with the irreducible representations of finite dimension of q-oscillator algebra A(q) at a root of unity. The structure of Hopf algebras of A(q) has also been given.
引用
收藏
页码:799 / 804
页数:6
相关论文
共 50 条
  • [21] The general q-oscillator algebra and its coherent states
    Kwek, LC
    Oh, CH
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1998, 48 (11) : 1423 - 1428
  • [22] q-Oscillator representations of quantum matrices and braided matrices
    Arik, M
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 31 - 33
  • [23] INVARIANCE PROPERTIES OF THE Q-OSCILLATOR ALGEBRA - Q-ANALOG OF VONNEUMANNS THEOREM
    CHAICHIAN, M
    MNATSAKANOVA, MN
    VERNOV, YS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (06): : 2053 - 2059
  • [24] NONCLASSICAL Q-OSCILLATOR REALIZATION OF THE QUANTUM SU(2) ALGEBRA
    ZHEDANOV, AS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (12): : L713 - L717
  • [25] Tetrahedron equation and quantum R matrices for q-oscillator representations
    Kuniba, A.
    Okado, M.
    XXXTH INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (ICGTMP) (GROUP30), 2015, 597
  • [26] Multimode q-Oscillator Algebras with q2(k+1) = 1 and Their Bargmann–Fock Representations
    Ya-Jun Gao
    International Journal of Theoretical Physics, 2000, 39 : 1445 - 1456
  • [27] The Coupled q-oscillator Algebra and a Classification of Its Simple Weight Modules
    Tao, Wenqing
    FRONTIERS OF MATHEMATICS, 2025,
  • [28] Finite q-oscillator
    Atakishiyev, NM
    Klimyk, AU
    Wolf, KB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (21): : 5569 - 5587
  • [29] Operators of the q-oscillator
    Szafraniec, Franciszek Hugon
    NONCOMMUTATIVE HARMONIC ANALYSIS WITH APPLICATIONS TO PROBABILITY, 2007, 78 : 293 - 307
  • [30] NON-BOSONIC EXCITATIONS IN Q-OSCILLATOR SYSTEM FOR Q A ROOT OF UNITY
    CHANG, Z
    GUO, HY
    YAN, H
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1990, 14 (04) : 475 - 484