Lie Symmetries of Quasihomogeneous Polynomial Planar Vector Fields and Certain Perturbations

被引:0
|
作者
JavierCHAVARRIGA [1 ]
IsaacA.GARC?A [1 ]
机构
[1] Departament
关键词
Lie symmetries; Quasi-homogeneous systems; Planar vector fields;
D O I
暂无
中图分类号
O174.14 [多项式理论];
学科分类号
070104 ;
摘要
In this work we study Lie symmetries of planar quasihomogeneous polynomial vector fieldsfrom different points of view,showing its integrability.Additionally,we show that certain perturbationsof such vector fields which generalize the so-called degenerate infinity vector fields are also integrable.
引用
收藏
页码:185 / 192
页数:8
相关论文
共 50 条
  • [21] On planar polynomial vector fields with elementary first integrals
    Christopher, Colin
    Llibre, Jaume
    Pantazi, Chara
    Walcher, Sebastian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (08) : 4572 - 4588
  • [22] Defining relations for classical Lie algebras of polynomial vector fields
    Leites, D
    Poletaeva, E
    MATHEMATICA SCANDINAVICA, 1997, 81 (01) : 5 - 19
  • [23] Orbital linearization around equilibria of vector fields in Rn and Lie symmetries
    Garcia, Isaac A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (01) : 111 - 115
  • [24] A note on the period function for certain planar vector fields
    Garijo, Antonio
    Gasull, Armengol
    Jarque, Xavier
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (5-6) : 631 - 645
  • [25] Characterization and dynamics of certain classes of polynomial vector fields on the torus
    Jana, Supriyo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (01)
  • [26] Realization problems for limit cycles of planar polynomial vector fields
    Margalef-Bentabol, Juan
    Peralta-Salas, Daniel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (04) : 3844 - 3859
  • [27] Commuting planar polynomial vector fields for conservative Newton systems
    Nagloo, Joel
    Ovchinnikov, Alexey
    Thompson, Peter
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2018, 52 (03): : 59 - 62
  • [28] Commuting planar polynomial vector fields for conservative Newton systems
    Nagloo, Joel
    Ovchinnikov, Alexey
    Thompson, Peter
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (04)
  • [29] The Bifurcation of the Equatorial Periodic Orbit of the Planar Polynomial Vector Fields
    Xin An Zhang
    Lan Sun Chen
    Zhao Jun Liang
    Acta Mathematica Sinica, 2001, 17 : 471 - 480
  • [30] The bifurcation of the equatorial periodic orbit of the planar polynomial vector fields
    Zhang, XA
    Chen, LS
    Liang, ZJ
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (03) : 471 - 480