Progressive learning with multi-scale attention network for cross-domain vehicle re-identification

被引:3
|
作者
Yang WANG [1 ,2 ]
Jinjia PENG [3 ,4 ]
Huibing WANG [3 ]
Meng WANG [1 ,2 ]
机构
[1] School of Computer Science and Information Engineering, Hefei University of Technology
[2] Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology
[3] Information Science and Technology College, Dalian Maritime University
[4] School of Cyber Security and Computer, Hebei University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP391.41 []; U495 [电子计算机在公路运输和公路工程中的应用];
学科分类号
080203 ; 0838 ;
摘要
Vehicle re-identification(reID) aims to identify vehicles across different cameras that have nonoverlapping views. Most existing vehicle reID approaches train the reID model with well-labeled datasets via a supervised manner, which inevitably causes a severe drop in performance when tested in an unknown domain. Moreover, these supervised approaches require full annotations, which is limiting owing to the amount of unlabeled data. Therefore, with the aim of addressing the aforementioned problems, unsupervised vehicle reID models have attracted considerable attention. It always adopts domain adaptation to transfer discriminative information from supervised domains to unsupervised ones. In this paper, a novel progressive learning method with a multi-scale fusion network is proposed, named PLM, for vehicle reID in the unknown domain, which directly exploits inference from the available abundant data without any annotations. For PLM, a domain adaptation module is employed to smooth the domain bias, which generates images with similar data distribution to unlabeled target domain as “pseudo target samples”. Furthermore, to better exploit the distinct features of vehicle images in the unknown domain, a multi-scale attention network is proposed to train the reID model with the “pseudo target samples” and unlabeled samples; this network embeds low-layer texture features with high-level semantic features to train the reID model. Moreover, a weighted label smoothing(WLS) loss is proposed, which considers the distance between samples and different clusters to balance the confidence of pseudo labels in the feature learning module. Extensive experiments are carried out to verify that our proposed PLM achieves excellent performance on several benchmark datasets.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 50 条
  • [21] Cross-Domain Adversarial Feature Learning for Sketch Re-identification
    Pang, Lu
    Wang, Yaowei
    Song, Yi-Zhe
    Huang, Tiejun
    Tian, Yonghong
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 609 - 617
  • [22] Adaptive Cross-domain Learning for Generalizable Person Re-identification
    Zhang, Pengyi
    Dou, Huanzhang
    Yu, Yunlong
    Li, Xi
    COMPUTER VISION - ECCV 2022, PT XIV, 2022, 13674 : 215 - 232
  • [23] GAN-Siamese Network for Cross-Domain Vehicle Re-Identification in Intelligent Transport Systems
    Zhou, Zhili
    Li, Yujiang
    Li, Jin
    Yu, Keping
    Kou, Guang
    Wang, Meimin
    Gupta, Brij Bhooshan
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 2779 - 2790
  • [24] Multi-Scale Convolutional Network for Person Re-identification
    Wu, Qiong
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS AND COMMUNICATION TECHNOLOGY (CNCT 2016), 2016, 54 : 826 - 835
  • [25] Multi-Scale Relation Network for Person Re-identification
    Ma, Yi
    Bai, Tian
    Zhang, Wenyu
    Li, Shuang
    Hu, Jian
    Lu, Mingzhe
    26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,
  • [26] Multi-Scale Attention Network Based on Multi-Feature Fusion for Person Re-Identification
    Li, Minghao
    Yuan, Liming
    Wen, Xianbin
    Wang, Jianchen
    Xie, Gengsheng
    Jia, Yansong
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [27] Multi-scale joint learning for person re-identification
    Xie P.
    Xu X.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (03): : 613 - 622
  • [28] MSFFT: Multi-Scale Feature Fusion Transformer for cross platform vehicle re-identification
    Holla, B. Ashutosh
    Pai, M. M. Manohara
    Verma, Ujjwal
    Pai, Radhika M.
    NEUROCOMPUTING, 2024, 582
  • [29] MULTI-SCALE DEEP FEATURE FUSION FOR VEHICLE RE-IDENTIFICATION
    Cheng, Yiting
    Zhang, Chuanfa
    Gu, Kangzheng
    Qi, Lizhe
    Gan, Zhongxue
    Zhang, Wenqiang
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1928 - 1932
  • [30] A new adaptive multi-scale attention adversarial network for cross-domain fault diagnosis
    Kong, Lingtan
    Wang, Jinrui
    Wang, Dawei
    Bao, Huaiqian
    Zhang, Zongzhen
    Han, Baokun
    Man, Xuhao
    Qin, Ranran
    Yang, Xiaoli
    KNOWLEDGE-BASED SYSTEMS, 2025, 311