Fabrication of flower-like mesoporous TiO2 hierarchical spheres with ordered stratified structure as an anode for lithium-ion batteries

被引:0
|
作者
Yujie Zheng [1 ]
Bingjie Liu [1 ]
Pei Cao [1 ]
Hui Huang [1 ]
Jing Zhang [1 ]
Guowei Zhou [1 ]
机构
[1] Key Laboratory of Fine Chemicals in Universities of Shandong,School of Chemistry and Pharmaceutical Engineering,Qilu University of Technology (Shandong Academy of Sciences)
基金
中国国家自然科学基金;
关键词
Lithium ion batteries; Flower-like TiO2 spheres; Stratified structure; Multialmellar TiO2/SiO2 vesicles; Controllable morphology;
D O I
暂无
中图分类号
TB33 [复合材料]; TM912 [蓄电池];
学科分类号
摘要
In this study, flower-like mesoporous TiOhierarchical spheres(FMTHSs) with ordered stratified structure and TiOnanoparticles(TNPs) were synthesized via a facile solvothermal route and an etching reaction. Multilamellar vesicles(MTSVs) and unilamellar TiO/SiOvesicles(UTSVs) were prepared using cetyltrimethylammonium bromide and didodecyldimethylammonium bromide as structure-directing agents under different solvothermal conditions. FMTHSs and TNPs were obtained from the etching reactions of MTSVs and UTSVs, respectively, in an alkaline system. FMTHSs display flower-like, ordered stratified structures on each petal. The thickness of the ordered stratified structure is approximately3–6 nm, and the number of layers is approximately 2–4. The FMTHSs2 electrode exhibits the first discharge capacity of 212.4 m A h gat 0.2 C, which is higher than that of TNPs electrode(167.6 mA h g).The discharge specific capacity of FMTHSs2 electrode after 200 cycles at 1 C is 105.9 mA h g, which is higher than that of TNPs electrode(52.2 mA h g) after the same number of cycles. The outstanding performance of FMTHSs2 electrode is attributed to the advantages of FMTHSs. In particular, their own stratified structure can provide additional active sites for reactions. The hierarchical structure can provide short diffusion length for Li~+, large electrolyte–electrode contact area, and superior accommodation of the strain of Li+intercalation/deintercalation.
引用
收藏
页码:667 / 673
页数:7
相关论文
共 50 条
  • [11] Carbon innercoated ordered porous TiO2 as anode materials for lithium-ion batteries
    L. Huang
    Y.-H. Ding
    P. Zhang
    H.-L. Zhang
    R.-H. Zhou
    Ionics, 2015, 21 : 1553 - 1559
  • [12] Carbon innercoated ordered porous TiO2 as anode materials for lithium-ion batteries
    Huang, L.
    Ding, Y. -H.
    Zhang, P.
    Zhang, H. -L.
    Zhou, R. -H.
    IONICS, 2015, 21 (06) : 1553 - 1559
  • [13] One-pot Synthesis of Hierarchical Flower-like WS2 Microspheres as Anode Materials for Lithium-ion Batteries
    Xianghua Zhang
    Hen Tan
    Ze Wang
    Maoquan Xue
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2024, 39 : 1 - 6
  • [14] One-pot Synthesis of Hierarchical Flower-like WS2 Microspheres as Anode Materials for Lithium-ion Batteries
    Zhang, Xianghua
    Tan, Hen
    Wang, Ze
    Xue, Maoquan
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2024, 39 (01): : 1 - 6
  • [15] One-pot Synthesis of Hierarchical Flower-like WS2Microspheres as Anode Materials for Lithium-ion Batteries
    张向华
    TAN Hen
    WANG Ze
    XUE Maoquan
    Journal of Wuhan University of Technology(Materials Science), 2024, 39 (01) : 1 - 6
  • [16] Hierarchical bicomponent TiO2 hollow spheres as a new high-capacity anode material for lithium-ion batteries
    Liu, Ruiping
    Shen, Chao
    Zhang, Chao
    Iocozzia, James
    Wang, Qi
    Zhao, Shiqiang
    Yuan, Kunjie
    Lin, Zhiqun
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (11) : 8499 - 8509
  • [17] Enhanced anode performance of flower-like NiO/RGO nanocomposites for lithium-ion batteries
    Li, Xiaojia
    Fan, Linlin
    Li, Xifei
    Shan, Hui
    Chen, Chen
    Yan, Bo
    Xiong, Dongbin
    Li, Dejun
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 217 : 547 - 552
  • [18] Hierarchical bicomponent TiO2 hollow spheres as a new high-capacity anode material for lithium-ion batteries
    Ruiping Liu
    Chao Shen
    Chao Zhang
    James Iocozzia
    Qi Wang
    Shiqiang Zhao
    Kunjie Yuan
    Zhiqun Lin
    Journal of Materials Science, 2018, 53 : 8499 - 8509
  • [19] Flower-like SnO2 nanoparticles grown on graphene as anode materials for lithium-ion batteries
    Qi Guo
    Xue Qin
    Journal of Solid State Electrochemistry, 2014, 18 : 1031 - 1039
  • [20] Flower-like SnO2 nanoparticles grown on graphene as anode materials for lithium-ion batteries
    Guo, Qi
    Qin, Xue
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (04) : 1031 - 1039