Tsallis relative α entropy of coherence dynamics in Grover′s search algorithm

被引:0
|
作者
Linlin Ye [1 ]
Zhaoqi Wu [1 ]
Shao-Ming Fei [2 ]
机构
[1] Department of Mathematics, Nanchang University
[2] School of Mathematical Sciences, Capital Normal University
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O413.1 [量子力学(波动力学、矩阵力学)];
学科分类号
070205 ; 0809 ;
摘要
Quantum coherence plays a central role in Grover’s search algorithm. We study the Tsallis relative a entropy of coherence dynamics of the evolved state in Grover’s search algorithm. We prove that the Tsallis relative a entropy of coherence decreases with the increase of the success probability, and derive the complementarity relations between the coherence and the success probability. We show that the operator coherence of the first H■ relies on the size of the database N, the success probability and the target states. Moreover, we illustrate the relationships between coherence and entanglement of the superposition state of targets, as well as the production and deletion of coherence in Grover iterations.
引用
收藏
页码:89 / 101
页数:13
相关论文
共 50 条
  • [21] Entangling and disentangling in Grover's search algorithm
    Pan, Minghua
    Qiu, Daowen
    Mateus, Paulo
    Gruska, Jozef
    THEORETICAL COMPUTER SCIENCE, 2019, 773 : 138 - 152
  • [22] Noise in Grover's quantum search algorithm
    Pablo-Norman, B
    Ruiz-Altaba, M
    PHYSICAL REVIEW A, 2000, 61 (01): : 123011 - 123015
  • [23] The Tsallis Relative 2-Entropy of Coherence under Mutually Unbiased Bases
    Sun, Liu
    Tao, Yuan-Hong
    Li, Lin Song
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2023, 62 (08)
  • [24] Multipartite entanglement in Grover's search algorithm
    Qu, Ri
    Shang, Bingjian
    Bao, Yanru
    Song, Dawei
    Teng, ChunMing
    Zhou, Zhiwei
    NATURAL COMPUTING, 2015, 14 (04) : 683 - 689
  • [25] The Tsallis Relative 2-Entropy of Coherence under Mutually Unbiased Bases
    Liu Sun
    Yuan-Hong Tao
    Lin Song Li
    International Journal of Theoretical Physics, 62
  • [26] Multipartite entanglement in Grover’s search algorithm
    Ri Qu
    Bingjian Shang
    Yanru Bao
    Dawei Song
    ChunMing Teng
    Zhiwei Zhou
    Natural Computing, 2015, 14 : 683 - 689
  • [27] Noise in Grover's quantum search algorithm
    Pablo-Norman, B.
    Ruiz-Altaba, M.
    2000, American Physical Society (61):
  • [28] Grover's search algorithm: an optical approach
    Kwiat, PG
    Mitchell, JR
    Schwindt, PDD
    White, AG
    JOURNAL OF MODERN OPTICS, 2000, 47 (2-3) : 257 - 266
  • [29] Grover's quantum search algorithm and Diophantine approximation
    Dolev, S
    Pitowsky, I
    Tamir, B
    PHYSICAL REVIEW A, 2006, 73 (02):
  • [30] Grover's algorithm for multiobject search in quantum computing
    Chen, G
    Fulling, SA
    Lee, H
    Scully, MO
    DIRECTIONS IN QUANTUM OPTICS, 2001, 561 : 165 - 175