THE SPECTRAL COMPLETION OF A CLASS OF OPERATOR PARTIAL MATRICES

被引:1
|
作者
CUI Jianlian (Institute of Mathematics
GAO Mingchu (Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
Operator partial matrix; spectrum; linear system;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
A sufficient and necessary condition is given for the operator partial matrix () to have a completion T = () such that σ(T) Ω with X and Y being compact operators, where Ω is a given open set containing zero in the complex plane with every component being simply connected. This result is also used to discuss the power stabilizability of the discrete time infinite dimensional systems.
引用
收藏
页码:358 / 365
页数:8
相关论文
共 50 条
  • [11] Operator matrices in class Cρ
    Cassier, G.
    Zerouali, E. H.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 361 - 376
  • [12] Idempotent Completions of Operator Partial Matrices
    Heydar Radjavi
    Peter Rosenthal
    Acta Mathematica Sinica(English Series), 1999, 15 (03) : 333 - 346
  • [13] ON FREDHOLM COMPLETIONS OF PARTIAL OPERATOR MATRICES
    Hai, Guojun
    Zhang, Nan
    ANNALS OF FUNCTIONAL ANALYSIS, 2017, 8 (04): : 479 - 489
  • [14] Spectral properties of some operator matrices
    Il Bong Jung
    Eungil Ko
    Carl Pearcy
    Archiv der Mathematik, 2003, 80 : 37 - 46
  • [15] Idempotent completions of operator partial matrices
    Jinchuan Hou
    Heydar Radjavi
    Peter Rosenthal
    Acta Mathematica Sinica, 1999, 15 : 333 - 346
  • [16] Spectral properties of some operator matrices
    Jung, IB
    Ko, EG
    Pearcy, C
    ARCHIV DER MATHEMATIK, 2003, 80 (01) : 37 - 46
  • [17] Idempotent completions of operator partial matrices
    Hou, JC
    Radjavi, H
    Rosenthal, P
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 1999, 15 (03): : 333 - 346
  • [18] ON WEYL COMPLETIONS OF PARTIAL OPERATOR MATRICES
    Wu, Xiufeng
    Huang, Junjie
    Chen, Alatancang
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (02): : 229 - 241
  • [19] Spectral decomposition of symmetric operator matrices
    Mennicken, R
    Shkalikov, AA
    MATHEMATISCHE NACHRICHTEN, 1996, 179 : 259 - 273
  • [20] On local spectral properties of operator matrices
    Il Ju An
    Eungil Ko
    Ji Eun Lee
    Journal of Inequalities and Applications, 2021