Gorenstein homological invariant properties under Frobenius extensions

被引:1
|
作者
Zhibing Zhao [1 ]
机构
[1] School of Mathematical Sciences, Anhui University
基金
中国国家自然科学基金;
关键词
Frobenius extensions; separable extensions; Gorenstein projective modules; representation dimension;
D O I
暂无
中图分类号
O153 [抽象代数(近世代数)];
学科分类号
070104 ;
摘要
We prove that for a Frobenius extension, a module over the extension ring is Gorenstein projective if and only if its underlying module over the base ring is Gorenstein projective. For a separable Frobenius extension between Artin algebras, we obtain that the extension algebra is CM(Cohen-Macaulay)-finite(resp.CM-free) if and only if so is the base algebra. Furthermore, we prove that the representation dimension of Artin algebras is invariant under separable Frobenius extensions.
引用
收藏
页码:2487 / 2496
页数:10
相关论文
共 50 条