We prove that for a Frobenius extension, a module over the extension ring is Gorenstein projective if and only if its underlying module over the base ring is Gorenstein projective. For a separable Frobenius extension between Artin algebras, we obtain that the extension algebra is CM(Cohen-Macaulay)-finite(resp.CM-free) if and only if so is the base algebra. Furthermore, we prove that the representation dimension of Artin algebras is invariant under separable Frobenius extensions.
机构:
Jiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Jiangsu, Peoples R ChinaJiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Jiangsu, Peoples R China
Hu, Jiangsheng
Zhang, Dongdong
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R ChinaJiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Jiangsu, Peoples R China
Zhang, Dongdong
Zhou, Panyue
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Inst Sci & Technol, Coll Math, Yueyang 414006, Hunan, Peoples R ChinaJiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Jiangsu, Peoples R China