Gorenstein homological invariant properties under Frobenius extensions

被引:1
|
作者
Zhibing Zhao [1 ]
机构
[1] School of Mathematical Sciences, Anhui University
基金
中国国家自然科学基金;
关键词
Frobenius extensions; separable extensions; Gorenstein projective modules; representation dimension;
D O I
暂无
中图分类号
O153 [抽象代数(近世代数)];
学科分类号
070104 ;
摘要
We prove that for a Frobenius extension, a module over the extension ring is Gorenstein projective if and only if its underlying module over the base ring is Gorenstein projective. For a separable Frobenius extension between Artin algebras, we obtain that the extension algebra is CM(Cohen-Macaulay)-finite(resp.CM-free) if and only if so is the base algebra. Furthermore, we prove that the representation dimension of Artin algebras is invariant under separable Frobenius extensions.
引用
收藏
页码:2487 / 2496
页数:10
相关论文
共 50 条
  • [1] Gorenstein homological invariant properties under Frobenius extensions
    Zhibing Zhao
    Science China Mathematics, 2019, 62 : 2487 - 2496
  • [2] Gorenstein homological invariant properties under Frobenius extensions
    Zhao, Zhibing
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (12) : 2487 - 2496
  • [3] Frobenius functors and Gorenstein homological properties
    Chen, Xiao-Wu
    Ren, Wei
    JOURNAL OF ALGEBRA, 2022, 610 : 18 - 37
  • [4] GORENSTEIN MODULES UNDER FROBENIUS EXTENSIONS
    Kong, Fangdi
    Wu, Dejun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (06) : 1567 - 1579
  • [5] Gorenstein Homological Properties and Quasi-Frobenius Bimodules
    Chaoling Huang
    Yongliang Sun
    Yanbo Zhou
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 805 - 817
  • [6] Gorenstein Homological Properties and Quasi-Frobenius Bimodules
    Huang, Chaoling
    Sun, Yongliang
    Zhou, Yanbo
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 805 - 817
  • [7] GORENSTEIN HOMOLOGICAL PROPERTIES FOR HOPF-GALOIS EXTENSIONS
    Zhou, Xiaoyan
    Yang, Tao
    COLLOQUIUM MATHEMATICUM, 2019, 157 (02) : 203 - 212
  • [8] Homological invariants of unbounded complexes under Frobenius extensions
    Wu, Dejun
    Wang, Yongduo
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (03) : 1298 - 1307
  • [9] EXCELLENT EXTENSIONS AND GORENSTEIN HOMOLOGICAL DIMENSION
    Gu, Qinqin
    Zhu, Xiaosheng
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2010, 47 (04) : 430 - 434
  • [10] Gorenstein projective modules and Frobenius extensions
    Wei Ren
    Science China Mathematics, 2018, 61 : 1175 - 1186