Stability of Schrdinger-Poisson type equations

被引:3
|
作者
黄娟 [1 ]
张健 [1 ]
陈光淦 [1 ]
机构
[1] College of Mathematics and Software Science,Sichuan Normal University
基金
中国国家自然科学基金;
关键词
Schrdinger-Poisson type equations; ground state; existence; orbital sta-bility;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
070104 ;
摘要
Variational methods are used to study the nonlinear Schrdinger-Poisson type equations which model the electromagnetic wave propagating in the plasma in physics. By analyzing the Hamiltonian property to construct a constrained variational problem, the existence of the ground state of the system is obtained. Furthermore, it is shown that the ground state is orbitally stable.
引用
收藏
页码:1469 / 1474
页数:6
相关论文
共 50 条
  • [41] Schrdinger-Poisson问题的整体古典解
    崔国忠
    江成顺
    王元明
    数学进展, 2001, (03) : 259 - 268
  • [42] Variable Supercritical Schrödinger-Poisson system with singular term
    de Araujo, Anderson Luis Albuquerque
    Faria, Luiz Fernando de Oliveira
    Silva, Jeferson Camilo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
  • [43] Multiplicity and Concentration Results for Fractional Schrödinger-Poisson Equations with Magnetic Fields and Critical Growth
    Vincenzo Ambrosio
    Potential Analysis, 2020, 52 : 565 - 600
  • [44] Existence and Nonlinear Stability of Stationary States for the Semi-Relativistic Schrödinger-Poisson System
    Walid Abou Salem
    Thomas Chen
    Vitali Vougalter
    Annales Henri Poincaré, 2014, 15 : 1171 - 1196
  • [45] MULTIPLE LOCALIZED SOLUTIONS OF HIGH TOPOLOGICAL TYPE FOR SEMICLASSICAL NONLINEAR SCHRÓDINGER-POISSON SYSTEM
    Guan, Wen
    Wang, Da-Bin
    Wu, Zhi-Guo
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2024, 37 (7-8) : 479 - 522
  • [46] Normalized solutions for a fractional Schrödinger-Poisson system with critical growth
    He, Xiaoming
    Meng, Yuxi
    Squassina, Marco
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (06)
  • [47] NORMALIZED SOLUTIONS FOR PLANAR SCHRÖDINGER-POISSON SYSTEM WITH A POSITIVE POTENTIAL
    Shu, Muhua
    Wen, Lixi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [48] GROUND STATE SOLUTIONS FOR A SCHR?DINGER-POISSON SYSTEM WITH UNCONVENTIONAL POTENTIAL
    杜瑶
    唐春雷
    ActaMathematicaScientia, 2020, 40 (04) : 934 - 944
  • [49] Existence and multiplicity of solutions for the Schrödinger-Poisson equation with prescribed mass
    Peng, Xueqin
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (05)
  • [50] A multi-purpose Schrödinger-Poisson Solver for TCAD applications
    Markus Karner
    Andreas Gehring
    Stefan Holzer
    Mahdi Pourfath
    Martin Wagner
    Wolfgang Goes
    Martin Vasicek
    Oskar Baumgartner
    Christian Kernstock
    Klaus Schnass
    Gerhard Zeiler
    Tibor Grasser
    Hans Kosina
    Siegfried Selberherr
    Journal of Computational Electronics, 2007, 6 : 179 - 182