Simultaneous Denoising and Interpolation of Seismic Data via the Deep Learning Method

被引:4
|
作者
GAO Han [1 ]
ZHANG Jie [1 ]
机构
[1] University of Science and Technology of China
基金
中国国家自然科学基金;
关键词
Deep learning; Convolutional neural network; Denoising; Data interpolation; Iterative alternating;
D O I
10.19743/j.cnki.0891-4176.201901003
中图分类号
P631.44 [];
学科分类号
0818 ; 081801 ; 081802 ;
摘要
Utilizing data from controlled seismic sources to image the subsurface structures and invert the physical properties of the subsurface media is a major effort in exploration geophysics. Dense seismic records with high signal-to-noise ratio(SNR) and high fidelity helps in producing high quality imaging results. Therefore, seismic data denoising and missing traces reconstruction are significant for seismic data processing. Traditional denoising and interpolation methods rarely occasioned rely on noise level estimations, thus requiring heavy manual work to deal with records and the selection of optimal parameters. We propose a simultaneous denoising and interpolation method based on deep learning. For noisy records with missing traces, we adopt an iterative alternating optimization strategy and separate the objective function of the data restoring problem into two sub-problems. The seismic records can be reconstructed by solving a least-square problem and applying a set of pre-trained denoising models alternatively and iteratively.We demonstrate this method with synthetic and field data.
引用
收藏
页码:37 / 51
页数:15
相关论文
共 50 条
  • [31] Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis
    Oropeza, Vicente
    Sacchi, Mauricio
    GEOPHYSICS, 2011, 76 (03) : V25 - V32
  • [32] Deep-learning-based seismic data interpolation: A preliminary result
    Wang, Benfeng
    Zhang, Ning
    Lu, Wenkai
    Wang, Jialin
    GEOPHYSICS, 2019, 84 (01) : V11 - V20
  • [33] An Improved Weighted Projection Onto Convex Sets Method for Seismic Data Interpolation and Denoising
    Wang, Benfeng
    Chen, Xiaohong
    Li, Jingye
    Cao, Jingjie
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (01) : 228 - 235
  • [34] Seismic data interpolation using deep learning with generative adversarial networks
    Kaur, Harpreet
    Pham, Nam
    Fomel, Sergey
    GEOPHYSICAL PROSPECTING, 2021, 69 (02) : 307 - 326
  • [35] Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method
    Chen, Yangkang
    Zhang, Dong
    Jin, Zhaoyu
    Chen, Xiaohong
    Zu, Shaohuan
    Huang, Weilin
    Gan, Shuwei
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 206 (03) : 1695 - 1717
  • [36] Simultaneous interpolation and denoising based on a modified thresholding method
    Cao, Jingjie
    Wang, Shangxu
    Liang, Wenquan
    STUDIA GEOPHYSICA ET GEODAETICA, 2019, 63 (04) : 569 - 583
  • [37] Simultaneous interpolation and denoising based on a modified thresholding method
    Jingjie Cao
    Shangxu Wang
    Wenquan Liang
    Studia Geophysica et Geodaetica, 2019, 63 : 569 - 583
  • [38] Seismic Data Interpolation via Denoising Diffusion Implicit Models With Coherence-Corrected Resampling
    Wei, Xiaoli
    Zhang, Chunxia
    Wang, Hongtao
    Tan, Chengli
    Xiong, Deng
    Jiang, Baisong
    Zhang, Jiangshe
    Kim, Sang-Woon
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [39] Seismic Data Interpolation via Denoising Diffusion Implicit Models With Coherence-Corrected Resampling
    Wei, Xiaoli
    Zhang, Chunxia
    Wang, Hongtao
    Tan, Chengli
    Xiong, Deng
    Jiang, Baisong
    Zhang, Jiangshe
    Kim, Sang-Woon
    IEEE Transactions on Geoscience and Remote Sensing, 2024, 62
  • [40] Deep unfolding dictionary learning for seismic denoising
    Sui, Yuhan
    Wang, Xiaojing
    Ma, Jianwei
    GEOPHYSICS, 2023, 88 (01) : WA129 - WA147