Methane hydrate crystal growth on shell substrate

被引:0
|
作者
Xin Jiang [1 ]
Baojiang Sun [1 ,2 ]
Zhiyuan Wang [1 ,2 ]
Wantian Zhou [1 ]
Jiakai Ji [1 ]
Litao Chen [1 ,2 ]
机构
[1] School of Petroleum Engineering,China University of Petroleum (East China)
[2] Key Laboratory of Unconventional Oil and Gas Development,China University of Petroleum (East China)
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O782 [晶体生长工艺]; TQ221.11 [];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ; 0817 ;
摘要
Hydrate crystals growth on the surface of methane bubble(hydrate film) in pure water was studied by using a high-pressure visible microscope under the conditions of subcooling ΔT = 5.44–13.72 K and methane concentration difference ΔC = 2.92–8.19 mol·L-1. It was found the hydrate film is porous and the hydrate crystals grow towards the liquid phase on the film substrate. The crystal morphology and growth rate are affected by ΔT and ΔC. When ΔT < 8.82 K and ΔC < 4.12 mol·L-1, the hydrate grows into scattered columnar crystals, and the axial growth rate of the crystal gradually decreases. WhenΔT > 8.82 K or ΔC > 4.12 mol·L-1, the hydrate crystals grow in dendritic shape, and the axial growth rate increases first and then decreases. The perimeter and area of the growing hydrate crystals were measured, and the fractal dimension of hydrate crystal under different ΔC and ΔT was calculated. The results show that the fractal dimension of columnar hydrate crystal is greater than 3. When3.87 mol·L-1< ΔC < 4.20 mol·L-1and 7.4 K < ΔT < 8.8 K, the fractal dimension of columnar hydrate crystal is greater than 4; The fractal dimension of dendritic hydrate crystal is less than 3. When ΔC > 4.77 mol·L-1, ΔT < 8.52 K, the fractal dimension of dendritic hydrate crystal is less than 2.
引用
收藏
页码:50 / 61
页数:12
相关论文
共 50 条
  • [31] An intelligent equation for methane hydrate growth kinetics
    Perez-Moroyoqui, Rene
    Ibanez-Orozco, Oscar
    Rodriguez-Romo, Suemi
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 192 : 19 - 32
  • [32] Hydrate Shell Growth Measured Using NMR
    Haber, Agnes
    Akhfash, Masoumeh
    Loh, Charles K.
    Aman, Zachary M.
    Fridjonsson, Einar O.
    May, Eric F.
    Johns, Michael L.
    LANGMUIR, 2015, 31 (32) : 8786 - 8794
  • [33] CRYSTAL AND MOLECULAR-STRUCTURE OF TETRAKIS(CYANOMERCURI)METHANE HYDRATE
    GRDENIC, D
    SIKIRICA, M
    KORPARCOLIG, B
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1978, 153 (01) : 1 - 7
  • [34] Multiscale Modeling and Simulation of Water and Methane Hydrate Crystal Interface
    Mirzaeifard, Sina
    Servio, Phillip
    Rey, Alejandro D.
    CRYSTAL GROWTH & DESIGN, 2019, 19 (09) : 5142 - 5151
  • [35] The growth of methane hydrate with impingement influenced by thermodynamic inhibitor
    Liu, Yang
    Chen, Cong
    Chen, Zherui
    Li, Weizhong
    Qin, Yan
    Dong, Bo
    FUEL, 2021, 304
  • [36] Effect of Methanol on the Kinetics of Nucleation and Growth of Methane Hydrate
    A. P. Semenov
    T. B. Tulegenov
    R. I. Mendgaziev
    A. S. Stoporev
    V. A. Istomin
    V. A. Vinokurov
    Chemistry and Technology of Fuels and Oils, 2023, 59 : 667 - 672
  • [37] Microsecond Simulations of Spontaneous Methane Hydrate Nucleation and Growth
    Walsh, Matthew R.
    Koh, Carolyn A.
    Sloan, E. Dendy
    Sum, Amadeu K.
    Wu, David T.
    SCIENCE, 2009, 326 (5956) : 1095 - 1098
  • [38] Effect of Methanol on the Kinetics of Nucleation and Growth of Methane Hydrate
    Semenov, A. P.
    Tulegenov, T. B.
    Mendgaziev, R. I.
    Stoporev, A. S.
    Istomin, V. A.
    Vinokurov, V. A.
    CHEMISTRY AND TECHNOLOGY OF FUELS AND OILS, 2023, 59 (04) : 667 - 672
  • [39] Elasticity of single-crystal methane hydrate at high pressure
    Shimizu, H
    Kumazaki, T
    Kume, T
    Sasaki, S
    PHYSICAL REVIEW B, 2002, 65 (21): : 1 - 4
  • [40] Hydrate Growth on Methane Gas Bubbles in the Presence of Salt
    Yu, Louis C. Y.
    Charlton, Thomas B.
    Aman, Zachary M.
    Wu, David T.
    Koh, Carolyn A.
    LANGMUIR, 2020, 36 (01) : 84 - 95