Low-temperature performance of Zn-modified graphite and hard carbon as anodes for lithium-ion batteries

被引:0
|
作者
Belgibayeva, Ayaulym [1 ]
Kydyrbayeva, Uldana [1 ]
Rakhatkyzy, Makpal [2 ]
Kalimuldina, Gulnur [3 ]
Nurpeissova, Arailym [1 ]
Bakenov, Zhumabay [1 ,2 ]
机构
[1] Natl Lab Astana, Kabanbay Batyr Ave 53, Astana 010000, Kazakhstan
[2] Nazarbayev Univ, Sch Engn & Digital Sci, Dept Chem & Mat Engn, Kabanbay Batyr Ave 53, Astana 010000, Kazakhstan
[3] Nazarbayev Univ, Sch Engn & Digital Sci, Dept Mech & Aerosp Engn, Kabanbay Batyr Ave 53, Astana 010000, Kazakhstan
关键词
Graphite; Hard carbon; Zn modification; Low temperature; Lithium-ion batteries; ELECTROCHEMICAL PERFORMANCE; COMPOSITE ANODES; BEHAVIOR;
D O I
10.1016/j.solidstatesciences.2025.107923
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Graphite has been the primary anode material in commercial lithium-ion batteries (LIBs) due to its lithium-like charge/discharge profiles and stable performance at room temperature. However, its effectiveness in lowtemperature conditions remains a significant limitation for LIB applications. Hard carbon, an alternative anode material, offers potential advantages in low-temperature environments due to its unique porous structure and lithium storage mechanism. In this study, Zn-modified graphite and hard carbon electrodes were developed by partially substituting the conductive agent acetylene black with 1 wt% Zn. The impact of this Zn addition on the low-temperature performance of the anodes and solid electrolyte interphase (SEI) formation was systematically investigated, comparing Zn-modified electrodes to pristine Zn-free ones. The results indicate that Zn incorporation enhances electrochemical performance by improving electrical conductivity and fostering the development of a thin, uniform LiF-rich SEI layer, which reduces charge-transfer resistance and accelerates electrode activation at low temperatures.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Understanding the Role of SEI Layer in Low-Temperature Performance of Lithium-Ion Batteries
    Yoo, Dong-Joo
    Liu, Qian
    Cohen, Orion
    Kim, Minkyu
    Persson, Kristin A.
    Zhang, Zhengcheng
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (09) : 11910 - 11918
  • [42] Effect of fluoroethylene carbonate additive on the low-temperature performance of lithium-ion batteries
    He, Han
    Wang, Yue
    Li, Meng
    Qiu, Jingyi
    Wen, Yuehua
    Chen, Junhong
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 925
  • [43] Reversible lithium plating on working anodes enhances fast charging capability in low-temperature lithium-ion batteries
    Tian, Yu
    Lin, Cheng
    Chen, Xiang
    Yu, Xiao
    Xiong, Rui
    Zhang, Qiang
    ENERGY STORAGE MATERIALS, 2023, 56 : 412 - 423
  • [44] Development of carbon materials for high performance anodes in lithium-ion batteries
    Takami, N
    Satoh, A
    Ohsaki, T
    Kanda, M
    ELECTROCHEMISTRY, 2001, 69 (07) : 555 - 555
  • [45] Synthesis of Free-Standing Tin Phosphide/Phosphate Carbon Composite Nanofibers as Anodes for Lithium-Ion Batteries with Improved Low-Temperature Performance
    Belgibayeva, Ayaulym
    Rakhatkyzy, Makpal
    Rakhmetova, Aiym
    Kalimuldina, Gulnur
    Nurpeissova, Arailym
    Bakenov, Zhumabay
    SMALL, 2023, 19 (48)
  • [46] Review on Low-Temperature Electrolytes for Lithium-Ion and Lithium Metal Batteries
    Tan, Sha
    Shadike, Zulipiya
    Cai, Xinyin
    Lin, Ruoqian
    Kludze, Atsu
    Borodin, Oleg
    Lucht, Brett L.
    Wang, Chunsheng
    Hu, Enyuan
    Xu, Kang
    Yang, Xiao-Qing
    ELECTROCHEMICAL ENERGY REVIEWS, 2023, 6 (01)
  • [47] Review on Low-Temperature Electrolytes for Lithium-Ion and Lithium Metal Batteries
    Sha Tan
    Zulipiya Shadike
    Xinyin Cai
    Ruoqian Lin
    Atsu Kludze
    Oleg Borodin
    Brett L. Lucht
    Chunsheng Wang
    Enyuan Hu
    Kang Xu
    Xiao-Qing Yang
    Electrochemical Energy Reviews, 2023, 6
  • [48] Investigation of binder distribution in graphite anodes for lithium-ion batteries
    Mueller, Marcus
    Pfaffmann, Lukas
    Jaiser, Stefan
    Baunach, Michael
    Trouillet, Vanessa
    Scheiba, Frieder
    Scharfer, Philip
    Schabel, Wilhelm
    Bauer, Werner
    JOURNAL OF POWER SOURCES, 2017, 340 : 1 - 5
  • [49] Composite SnO-graphite anodes for lithium-ion batteries
    Lee, JY
    Zhang, RF
    Liu, ZL
    LITHIUM BATTERIES, PROCEEDINGS, 2000, 99 (25): : 136 - 143
  • [50] Research Progress on Carbon Materials Modified SiOC Anodes in Lithium-Ion Batteries
    Zhang, Junzhan
    Han, Qing
    Chen, Hongxia
    Shi, Zongmo
    Liu, Yongsheng
    Lei, Wanying
    Wei, Jian
    Zhang, Ying
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2024, 52 (10): : 3327 - 3337