A Proper Quantization Rule for Solving the Klein-Gordon Equation with Equal and Unequal Scalar and Vector Interaction Potentials

被引:0
|
作者
Benchiheub, N. [1 ]
Berrehail, M. [2 ]
Grar, N. [3 ]
机构
[1] Univ Mohamed El Bachir El IBRAHIMI Bordj Bou Arrer, Lab Mat Phys Radiat & Nanostruct, El Anceur 34000, Algeria
[2] Univ Constantine 1, Dept Phys, Constantine 25000, Algeria
[3] Univ Mohamed El Bachir El IBRAHIMI Bordj Bou Arrer, Dept Matter Sci, El Anceur 34000, Algeria
来源
JORDAN JOURNAL OF PHYSICS | 2024年 / 17卷 / 05期
关键词
Proper quantization rule; Exact solutions; Klein-Gordon equation; Riccati equation; BOUND-STATES;
D O I
10.47011/17.5.1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the formal equivalence between the non-relativistic Schr & ouml;dinger equation and the relativistic Klein-Gordon equation and using the proper quantization rule as well as the Riccati equation solution, exact solutions are established for a set of interaction potentials (second Rosen-Morse, P & ouml;schl-Teller, second P & ouml;schl-Teller, Scarf II, and Eckart hyperbolic type potentials). The calculations are elaborated in the case of equal scalar and vector potentials. The general case of unequal scalar-vector potentials is detailed for the case of harmonic potential class.
引用
收藏
页码:517 / 529
页数:13
相关论文
共 50 条
  • [31] Bound states of the Klein-Gordon equation with vector and scalar Rosen-Morse-type potentials
    Yi, LZ
    Diao, YF
    Liu, JY
    Jia, CS
    PHYSICS LETTERS A, 2004, 333 (3-4) : 212 - 217
  • [32] Exact solutions of Klein-Gordon equation with scalar and vector Rosen-Morse-type potentials
    Soylu, A.
    Bayrak, O.
    Boztosun, I.
    CHINESE PHYSICS LETTERS, 2008, 25 (08) : 2754 - 2757
  • [33] Solutions of the Klein-Gordon Equation with Equal Scalar and Vector Harmonic Oscillator plus Inverse Quadratic Potential
    Ita, B. I.
    Obong, H. P.
    Ehi-Eromosele, C. O.
    Edobor-Osoh, A.
    Ikeuba, A. I.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS '14), 2014, 1629 : 162 - 166
  • [34] Bound states of Klein-Gordon equation and Dirac equation for scalar and vector Poschl-Teller-type potentials
    Chen, G
    ACTA PHYSICA SINICA, 2001, 50 (09) : 1651 - 1653
  • [35] Bound states of Klein-Gordon equation and Dirac equation for scalar and vector Poschl-Teller-type potentials
    Chen, Gang
    1653, Science Press (50):
  • [36] SOLVABLE POTENTIALS FOR THE KLEIN-GORDON EQUATION
    KULKARNI, SV
    SHARMA, LK
    INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE-PART A, 1980, 54 (1-2): : 21 - 28
  • [37] Bound states of Klein-Gordon equation for double ring-shaped oscillator scalar and vector potentials
    Lu, FL
    Chen, CY
    Sun, DS
    CHINESE PHYSICS, 2005, 14 (03): : 463 - 467
  • [38] Bound states of Klein-Gordon equation for ring-shaped harmonic oscillator scalar and vector potentials
    Qiang, WC
    CHINESE PHYSICS, 2003, 12 (02): : 136 - 139
  • [39] Bound state solution of the Klein-Gordon equation for vector and scalar Hellmann plus modified Kratzer potentials
    Aspoukeh, Peyman
    Mustafa, Samir
    CHINESE JOURNAL OF PHYSICS, 2020, 68 : 224 - 235
  • [40] Klein-Gordon particles in mixed vector-scalar inversely linear potentials
    de Castro, AS
    PHYSICS LETTERS A, 2005, 338 (02) : 81 - 89