Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations

被引:1
|
作者
Cianci, Cameron [1 ,2 ]
Santos, Lea F. [1 ]
Batista, Victor S. [3 ,4 ]
机构
[1] Univ Connecticut, Phys Dept, Storrs, CT 06269 USA
[2] Mirion Technol Canberra Inc, Meriden, CT 06450 USA
[3] Yale Univ, Dept Chem, New Haven, CT 06520 USA
[4] Yale Univ, Yale Quantum Inst, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
LIH;
D O I
10.1021/acs.jctc.4c00915
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum systems in excited states are attracting significant interest with the advent of noisy intermediate-scale quantum (NISQ) devices. While ground states of small molecular systems are typically explored using hybrid variational algorithms like the variational quantum eigensolver (VQE), the study of excited states has received much less attention, partly due to the absence of efficient algorithms. In this work, we introduce the subspace search quantum imaginary time evolution (SSQITE) method, which calculates excited states using quantum devices by integrating key elements of the subspace search variational quantum eigensolver (SSVQE) and the variational quantum imaginary time evolution (VarQITE) method. The effectiveness of SSQITE is demonstrated through calculations of low-lying excited states of benchmark model systems including H2 and LiH molecules. A toy Hamiltonian is also employed to demonstrate that the robustness of VarQITE in avoiding local minima extends to its use in excited state algorithms. With this robustness in avoiding local minima, SSQITE shows promise for advancing quantum computations of excited states across a wide range of applications.
引用
收藏
页码:8940 / 8947
页数:8
相关论文
共 50 条
  • [31] Prime factorization using quantum variational imaginary time evolution
    Raja Selvarajan
    Vivek Dixit
    Xingshan Cui
    Travis S. Humble
    Sabre Kais
    Scientific Reports, 11
  • [32] Digital Quantum Simulation of Open Quantum Systems Using Quantum Imaginary-Time Evolution
    Kamakari, Hirsh
    Sun, Shi-Ning
    Motta, Mario
    Minnich, Austin J.
    PRX QUANTUM, 2022, 3 (01):
  • [33] Efficient Step-Merged Quantum Imaginary Time Evolution Algorithm for Quantum Chemistry
    Gomes, Niladri
    Zhang, Feng
    Berthusen, Noah F.
    Wang, Cai-Zhuang
    Ho, Kai-Ming
    Orth, Peter P.
    Yao, Yongxin
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (10) : 6256 - 6266
  • [34] Quasi-adiabatic quantum Monte Carlo algorithm for quantum evolution in imaginary time
    Liu, Cheng-Wei
    Polkovnikov, Anatoli
    Sandvik, Anders W.
    PHYSICAL REVIEW B, 2013, 87 (17)
  • [35] Quantum imaginary-time evolution algorithm for quantum field theories with continuous variables
    Yeter-Aydeniz, Kubra
    Moschandreou, Eleftherios
    Siopsis, George
    PHYSICAL REVIEW A, 2022, 105 (01)
  • [36] Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution
    Mario Motta
    Chong Sun
    Adrian T. K. Tan
    Matthew J. O’Rourke
    Erika Ye
    Austin J. Minnich
    Fernando G. S. L. Brandão
    Garnet Kin-Lic Chan
    Nature Physics, 2020, 16 : 205 - 210
  • [37] Variational ansatz-based quantum simulation of imaginary time evolution
    Sam McArdle
    Tyson Jones
    Suguru Endo
    Ying Li
    Simon C. Benjamin
    Xiao Yuan
    npj Quantum Information, 5
  • [38] Leveraging randomized compiling for the quantum imaginary-time-evolution algorithm
    Ville, Jean -Loup
    Morvan, Alexis
    Hashim, Akel
    Naik, Ravi K.
    Lu, Marie
    Mitchell, Bradley
    Kreikebaum, John-Mark
    O'Brien, Kevin P.
    Wallman, Joel J.
    Hincks, Ian
    Emerson, Joseph
    Smith, Ethan
    Younis, Ed
    Iancu, Costin
    Santiago, David I.
    Siddiqi, Irfan
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [39] Real- and Imaginary-Time Evolution with Compressed Quantum Circuits
    Lin, Sheng-Hsuan
    Dilip, Rohit
    Green, Andrew G.
    Smith, Adam
    Pollmann, Frank
    PRX QUANTUM, 2021, 2 (01):
  • [40] Optimal scheduling in probabilistic imaginary-time evolution on a quantum computer
    Nishi, Hirofumi
    Hamada, Koki
    Nishiya, Yusuke
    Kosugi, Taichi
    Matsushita, Yu-Ichiro
    Physical Review Research, 2023, 5 (04):