Pan-cancer gene expression analysis of 538 solid tumors comparing Illumina RNA-seq and Agilent microarray platforms

被引:0
|
作者
Ohshima, Keiichi [1 ]
Nagashima, Takeshi [2 ,3 ]
Hatakeyama, Keiichi [4 ]
Kamada, Fukumi [2 ]
Ohnami, Sumiko [2 ]
Naruoka, Akane [5 ]
Serizawa, Masakuni [5 ]
Ohnami, Shumpei [2 ]
Kenmotsu, Hirotsugu [6 ]
Urakami, Kenichi [2 ]
Akiyama, Yasuto [7 ]
Yamaguchi, Ken [8 ]
机构
[1] Shizuoka Canc Ctr, Res Inst, Med Genet Div, Nagaizumi, Shizuoka, Japan
[2] Shizuoka Canc Ctr, Res Inst, Canc Diagnost Res Div, Nagaizumi, Shizuoka, Japan
[3] SRL Inc, Tokyo, Japan
[4] Shizuoka Canc Ctr, Res Inst, Canc Multiom Div, Nagaizumi, Shizuoka, Japan
[5] Shizuoka Canc Ctr, Res Inst, Drug Discovery & Dev Div, Nagaizumi, Shizuoka, Japan
[6] Shizuoka Canc Ctr Hosp, Div Genet Med Promotion6, Nagaizumi, Shizuoka, Japan
[7] Shizuoka Canc Ctr, Res Inst, Immunotherapy Div, Nagaizumi, Shizuoka, Japan
[8] Shizuoka Canc Ctr, Nagaizumi, Shizuoka, Japan
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
J-1024
引用
收藏
页码:160 / 160
页数:1
相关论文
共 50 条
  • [21] Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data
    Peipei Li
    Yongjun Piao
    Ho Sun Shon
    Keun Ho Ryu
    BMC Bioinformatics, 16
  • [22] Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data
    Li, Peipei
    Piao, Yongjun
    Shon, Ho Sun
    Ryu, Keun Ho
    BMC BIOINFORMATICS, 2015, 16
  • [23] Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity
    Gabriela S. Kinker
    Alissa C. Greenwald
    Rotem Tal
    Zhanna Orlova
    Michael S. Cuoco
    James M. McFarland
    Allison Warren
    Christopher Rodman
    Jennifer A. Roth
    Samantha A. Bender
    Bhavna Kumar
    James W. Rocco
    Pedro A. C. M. Fernandes
    Christopher C. Mader
    Hadas Keren-Shaul
    Alexander Plotnikov
    Haim Barr
    Aviad Tsherniak
    Orit Rozenblatt-Rosen
    Valery Krizhanovsky
    Sidharth V. Puram
    Aviv Regev
    Itay Tirosh
    Nature Genetics, 2020, 52 : 1208 - 1218
  • [24] Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity
    Kinker, Gabriela S.
    Greenwald, Alissa C.
    Tal, Rotem
    Orlova, Zhanna
    Cuoco, Michael S.
    McFarland, James M.
    Warren, Allison
    Rodman, Christopher
    Roth, Jennifer A.
    Bender, Samantha A.
    Kumar, Bhavna
    Rocco, James W.
    Fernandes, Pedro A. C. M.
    Mader, Christopher C.
    Keren-Shaul, Hadas
    Plotnikov, Alexander
    Barr, Haim
    Tsherniak, Aviad
    Rozenblatt-Rosen, Orit
    Krizhanovsky, Valery
    Puram, Sidharth V.
    Regev, Aviv
    Tirosh, Itay
    NATURE GENETICS, 2020, 52 (11) : 1208 - +
  • [25] Pan-Cancer Analysis of RNA Expression in TCGA Database
    Bloom, R.
    Talwar, R.
    Duncavage, E.
    Armstrong, J.
    Glasscock, J.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2016, 18 (06): : 1014 - 1014
  • [26] Expression Analysis of Telomere-related Genes in Solid and Hematologic Tumors Using RNA-Seq
    Atiq, M. A.
    Davila, J. I.
    Nair, A. A.
    Fadra, N. M.
    Wehrs, R. N.
    Jackson, R. A.
    Voss, J. S.
    Halling, K. C.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2018, 20 (06): : 910 - 910
  • [27] Meta-analysis of microarray and RNA-Seq gene expression datasets for carcinogenic risk: An assessment of Bisphenol A
    Jung, Junghyun
    Mok, Changsoo
    Lee, Woosuk
    Jang, Wonhee
    MOLECULAR & CELLULAR TOXICOLOGY, 2017, 13 (02) : 239 - 249
  • [28] Meta-analysis of microarray and RNA-Seq gene expression datasets for carcinogenic risk: An assessment of Bisphenol A
    Junghyun Jung
    Changsoo Mok
    Woosuk Lee
    Wonhee Jang
    Molecular & Cellular Toxicology, 2017, 13 : 239 - 249
  • [29] RNA-SEQ ANALYSIS OF ALCOHOLIC GENE EXPRESSION IN HUMAN BRAIN
    Wall, J.
    Lee, C. -H.
    Arasappan, D.
    Mohan, D.
    Hunicke-Smith, S.
    Harris, R. A.
    Mayfield, R. D.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2011, 35 (06) : 136A - 136A
  • [30] Predicting DNA accessibility in the pan-cancer tumor genome using RNA-Seq, WGS, and deep learning
    Wnuk, Kamil
    Sudol, Jeremi
    Rabizadeh, Shahrooz
    Soon-Shiong, Patrick
    Szeto, Christopher
    Vaske, Charles
    CANCER RESEARCH, 2017, 77