Respiratory Rate Estimation from Thermal Video Data Using Spatio-Temporal Deep Learning

被引:0
|
作者
Mozafari, Mohsen [1 ]
Law, Andrew J. [1 ,2 ]
Goubran, Rafik A. [1 ]
Green, James R. [1 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
[2] Natl Res Council Canada NRC, Flight Res Lab, Ottawa, ON K1A 0R6, Canada
关键词
respiration rate estimation; thermal video; deep learning; face detection;
D O I
10.3390/s24196386
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Thermal videos provide a privacy-preserving yet information-rich data source for remote health monitoring, especially for respiration rate (RR) estimation. This paper introduces an end-to-end deep learning approach to RR measurement using thermal video data. A detection transformer (DeTr) first finds the subject's facial region of interest in each thermal frame. A respiratory signal is estimated from a dynamically cropped thermal video using 3D convolutional neural networks and bi-directional long short-term memory stages. To account for the expected phase shift between the respiration measured using a respiratory effort belt vs. a facial video, a novel loss function based on negative maximum cross-correlation and absolute frequency peak difference was introduced. Thermal recordings from 22 subjects, with simultaneous gold standard respiratory effort measurements, were studied while sitting or standing, both with and without a face mask. The RR estimation results showed that our proposed method outperformed existing models, achieving an error of only 1.6 breaths per minute across the four conditions. The proposed method sets a new State-of-the-Art for RR estimation accuracy, while still permitting real-time RR estimation.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Microclimate spatio-temporal prediction using deep learning and land use data
    Han, Jintong
    Chong, Adrian
    Lim, Joie
    Ramasamy, Savitha
    Wong, Nyuk Hien
    Biljecki, Filip
    BUILDING AND ENVIRONMENT, 2024, 253
  • [12] Deep video action clustering via spatio-temporal feature learning
    Peng, Bo
    Lei, Jianjun
    Fu, Huazhu
    Jia, Yalong
    Zhang, Zongqian
    Li, Yi
    NEUROCOMPUTING, 2021, 456 : 519 - 527
  • [13] Deep Learning Based Video Spatio-Temporal Modeling for Emotion Recognition
    Fonnegra, Ruben D.
    Diaz, Gloria M.
    HUMAN-COMPUTER INTERACTION: THEORIES, METHODS, AND HUMAN ISSUES, HCI INTERNATIONAL 2018, PT I, 2018, 10901 : 397 - 408
  • [14] Spatio-temporal deep learning methods for motion estimation using 4D OCT image data
    Bengs, Marcel
    Gessert, Nils
    Schlueter, Matthias
    Schlaefer, Alexander
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (06) : 943 - 952
  • [15] Spatio-temporal deep learning methods for motion estimation using 4D OCT image data
    Marcel Bengs
    Nils Gessert
    Matthias Schlüter
    Alexander Schlaefer
    International Journal of Computer Assisted Radiology and Surgery, 2020, 15 : 943 - 952
  • [16] Deep Learning Aided Interpolation of Spatio-Temporal Nonstationary Data
    Kodera, Sayako
    Romer, Florian
    Perez, Eduardo
    Kirchhof, Jan
    Krieg, Fabian
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 2221 - 2225
  • [17] SPATIO-TEMPORAL CONSISTENCY IN VIDEO DISPARITY ESTIMATION
    Khoshabeh, Ramsin
    Chan, Stanley H.
    Nguyen, Truong Q.
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 885 - 888
  • [18] Canopy height estimation from PlanetScope time series with spatio-temporal deep learning
    Dixon, Dan J.
    Zhu, Yunzhe
    Jin, Yufang
    REMOTE SENSING OF ENVIRONMENT, 2025, 318
  • [19] Learning clustered deep spatio-temporal prototypes using softmax regression for video information systems
    Banerjee A.
    Kumar E.
    Ravinder M.
    International Journal of Information Technology, 2024, 16 (5) : 3085 - 3091
  • [20] Deep Learning From Spatio-Temporal Data Using Orthogonal Regularizaion Residual CNN for Air Prediction
    Zhang, Lei
    Li, Dong
    Guo, Quansheng
    IEEE ACCESS, 2020, 8 : 66037 - 66047