Towards Optimal χ-Binding Functions of (2K1 ∨ K2)-Free Graphs and (P3 ∨ K1)-Free Graphs

被引:0
|
作者
Angeliya, C. U. [1 ]
Choudum, Sheshayya [1 ]
Joseph, Mayamma [1 ]
机构
[1] Christ Univ, Dept Math, Bangalore 560029, India
关键词
Chromatic number; Clique number; chi-binding function; (2K(1 )boolean OR K-2)-free graphs; (P-3 boolean OR K-1)-free graphs; NUMBER;
D O I
10.1007/s00373-025-02897-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A function f : N -> R is called a chi-binding function for a hereditary family G of graphs, if chi(G) <= f (omega(G)) for every G is an element of G where chi (G) and omega (G) denote the chromatic number and clique number respectively. In his influential work, Gyarfas (1987) showed that the family of (2K(1 )boolean OR K-2)-free graphs and the family of (P-3 boolean OR K-1)-free graphs are chi-bounded. Randerath and Schiermeyer (2004) improved the chi-binding functions of both these classes to ((x+1)(2)). In this paper, we further improve the chi-binding function of both these classes to x(2)/2 for x >= 3. Furthermore, we obtain a tight chromatic bound for (P-3 boolean OR K-1)-free graphs with clique number 4.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] The Distance Matching Extension in K1,k-free Graphs with High Local Connectedness
    Wei-chan LIU
    Gui-ying YAN
    Acta Mathematicae Applicatae Sinica, 2022, 38 (01) : 37 - 43
  • [42] A stability theorem for maximal C 2 k + 1 ${C}_{2k+1}$-free graphs
    Wang, Jian
    Wang, Shipeng
    Yang, Weihua
    Yuan, Xiaoli
    JOURNAL OF GRAPH THEORY, 2022, 101 (02) : 274 - 287
  • [43] On hamiltonian properties of K1,r-free split graphs
    Liu, Xia
    Song, Sulin
    Zhan, Mingquan
    Lai, Hong-Jian
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [44] Strong chromatic index of K1,t-free graphs
    Debski, Michal
    Junosza-Szaniawski, Konstanty
    Sleszynska-Nowak, Malgorzata
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 53 - 60
  • [45] K-1,K-3-free and W-4-free graphs
    Kloks, T
    INFORMATION PROCESSING LETTERS, 1996, 60 (04) : 221 - 223
  • [46] CYCLES IN K1,3-FREE GRAPHS
    SHI, RH
    KEXUE TONGBAO, 1987, 32 (18): : 1293 - 1293
  • [47] CYCLES IN K1,3-FREE GRAPHS
    施容华
    Science Bulletin, 1987, (18) : 1293 - 1293
  • [48] Graphs K1*4,5, K1*5,4, K1*4,4, K2,3,4 have the property M(3)
    Mojdeh, D. A.
    Haji, A. Ahmadi
    Ahangar, H. Abdollahzadeh
    Khodkar, Abdollah
    ARS COMBINATORIA, 2007, 84 : 171 - 190
  • [49] Hamiltonicity of 2-connected {K1,4, K1,4 + e]-free graphs
    Li, R
    DISCRETE MATHEMATICS, 2004, 287 (1-3) : 69 - 76
  • [50] On K-1,K-3-free strictly Deza graphs
    Mityanina, A., V
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (01): : 231 - 234