Sustainable Conversion of PET Waste Bottle into Proton Exchange Membranes for Fuel Cells

被引:0
|
作者
Neelalochana, Varun Donnakatte [1 ]
Mancini, Ines [2 ]
Loi, Nicholas [3 ]
Cufalo, Giovanni [3 ]
D'Anzi, Angelo [3 ]
Scardi, Paolo [1 ]
Ataollahi, Narges [1 ]
机构
[1] Univ Trento, Dept Civil Environm & Mech Engn, I-38123 Trento, Italy
[2] Univ Trento, Dept Phys, Lab Bioorgan Chem, I-38123 Trento, Italy
[3] Arco Technol, I-40057 Bologna, Italy
关键词
polyethylene terephthalate; proton exchange membrane; solution casting; sulfonated; fuel cells; power density; sustainable; circular economy; MORPHOLOGY;
D O I
10.1021/acsaem.4c03313
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This research introduces a sustainable method to transform poly(ethylene terephthalate) (PET) waste bottles into sulfonated proton exchange membranes for fuel cell (PEMFC) applications, addressing the need for alternatives to fluorinated materials like Nafion. The material was obtained in two steps, by amidation through a nucleophilic substitution of 4,4-diamino-2,2-stilbenedisulfonic acid (DSDA) on bis(2-hydroxyethyl) terephthalate (BHET) derived by treating PET with ethylene glycol. The membrane, prepared from the obtained product using the solution casting technique, was tested in a single fuel cell, achieving a power density of 354 mW/cm2, and compared with commercial Nafion 212 membrane (605.4 mW/cm2). The result demonstrates the potential of membrane delivered from PET as a cost-effective and sustainable solution for PEMFCs, addressing critical environmental challenges. This innovative approach transforms waste PET bottles into advanced technologies, providing a key step forward in circular economy solutions.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] New Approaches to the Preparation of Nanocomposite Proton Exchange Membranes for Fuel Cells
    Yu. A. Dobrovolsky
    E. A. Sanginov
    N. G. Bukun
    A. N. Ponomarev
    D. A. Kritskaya
    E. F. Abdrashitov
    Nanotechnologies in Russia, 2020, 15 : 319 - 325
  • [42] Progress in proton-exchange membranes for direct methanol fuel cells
    Fu, XZ
    Li, J
    Li, CH
    Liao, DW
    PROGRESS IN CHEMISTRY, 2004, 16 (01) : 77 - 82
  • [43] New Approaches to the Preparation of Nanocomposite Proton Exchange Membranes for Fuel Cells
    Dobrovolsky, Yu A.
    Sanginov, E. A.
    Bukun, N. G.
    Ponomarev, A. N.
    Kritskaya, D. A.
    Abdrashitov, E. F.
    NANOTECHNOLOGIES IN RUSSIA, 2020, 15 (3-6): : 319 - 325
  • [44] Carbon nanotubes reinforced proton exchange membranes in fuel cells: An overview
    Gao, Jiangshan
    Dong, Xiaokun
    Tian, Qingbin
    He, Yan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (08) : 3216 - 3231
  • [45] Highly durable proton exchange membranes for low temperature fuel cells
    Tang, Haolin
    Pan, Mu
    Wang, Fang
    Shen, Pei Kang
    Jiang, San Ping
    JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (30): : 8684 - 8690
  • [46] Recent developments in fuel-processing and proton-exchange membranes for fuel cells
    Bai, He
    Ho, W. S. Winston
    POLYMER INTERNATIONAL, 2011, 60 (01) : 26 - 41
  • [47] FUEL 21-Layer-by-layer assembled proton exchange membranes for fuel cells
    Ashcraft, J. Nathan
    Argun, Avni A.
    Hammond, Paula T.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234
  • [48] Electrospun Composite Proton-Exchange and Anion-Exchange Membranes for Fuel Cells
    Shang, Zhihao
    Wycisk, Ryszard
    Pintauro, Peter
    ENERGIES, 2021, 14 (20)
  • [49] Highly Proton Conductive sPPEK/SSi-GO Composite Membranes for Proton Exchange Membranes Fuel Cells
    Zhu, X.
    Huang, J.
    Jin, C.
    Zhang, S.
    Li, S.
    Jiang, B.
    Sun, F.
    BATTERY ELECTROLYTES, 2017, 77 (01): : 37 - 45
  • [50] Proton exchange membranes for fuel cell applications
    Roy, Abhishek
    Yu, Xiang
    Lee, Hae-Seung
    Badami, Anand S.
    Dunn, Stuart
    McGrath, James E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233