Enhancing mechanical properties, durability and multifunctionality of concrete structures via using ultra-high performance concrete layer: A review

被引:1
|
作者
Dong, Sufen [1 ]
Gu, Jinfang [1 ]
Ouyang, Xinyu [1 ]
Jang, Sung-Hwan [2 ]
Han, Baoguo [1 ]
机构
[1] Dalian Univ Technol, Sch Infrastruct Engn, Dalian 116024, Peoples R China
[2] Hanyang Univ ERICA, Sch Engn, Dept Civil & Environm Engn, Ansan 15588, South Korea
基金
中国国家自然科学基金;
关键词
Ultra-high performance concrete (UHPC) layer; Concrete structures; Mechanical properties; Durability; Multifunctionality; FIBER-REINFORCED CONCRETE; ELECTROCHEMICAL CHLORIDE EXTRACTION; RC BEAMS; FLEXURAL BEHAVIOR; BOND STRENGTH; ACOUSTIC-EMISSION; UHPC; SHEAR; SUBSTRATE; UHPFRC;
D O I
10.1016/j.compositesb.2025.112329
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As a kind of advanced cement-based composites with superior mechanical properties and remarkable durability, ultra-high performance concrete (UHPC) shows great potential in repairing and strengthening concrete structures in the form of layers. Hence, this paper firstly conducts a systematic review on the static/dynamic mechanical properties, interfacial bond performance between UHPC layer and concrete, durability, and multifunctional/eco-friendly properties (e.g. self-sensing, self-heating, self-healing, self-cleaning, and selfliminescence capability) of UHPC layer repaired/strengthened concrete structures. Carbon polymer reinforced plastic bars reinforced UHPC layer significantly enhances the flexural ultimate load and ductility of reinforced concrete (RC) structures, and two-sided layers are economical and reasonable. Roughing interface and epoxy adhesive treatment are conducive to increasing flexural ultimate load and shear resistance of UHPC layerstrengthened RC beams. The failure mode of RC beams under impact load tends to change from shear to flexure by UHPC layer, and the gap less than 10 mm between UHPC layer and RC beam limits crack development in RC beams under single impact load. Strengthening the column-foot zone by using a UHPC jacket with the size higher than the plastic hinge zone improves their seismic performance of RC columns. The increase of NSC substrate strength, surface moisture, the using of water-based epoxy resin agent, and the proper curing can improve the interfacial bond strength between UHPC layer and RC beam. Meanwhile, it is worthwhile to note that UHPC layer is not beneficial for increasing high-temperature spalling resistance of RC structures, but can be used to develop smart and multifunctional infrastructures.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Vacuum mixing technology to improve the mechanical properties of ultra-high performance concrete
    Dils, J.
    Boel, V.
    De Schutter, G.
    MATERIALS AND STRUCTURES, 2015, 48 (11) : 3485 - 3501
  • [42] Effect of Lightweight Aggregate on Workability and Mechanical Properties of Ultra-high Performance Concrete
    Zhang G.
    Wang Y.
    Ge J.
    Yang J.
    Wei Q.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2021, 24 (03): : 499 - 507
  • [43] Application of nanomaterials in ultra-high performance concrete: A review
    Liu, Changjiang
    He, Xin
    Deng, Xiaowei
    Wu, Yuyou
    Zheng, Zhoulian
    Liu, Jian
    Hui, David
    NANOTECHNOLOGY REVIEWS, 2020, 9 (01) : 1427 - 1444
  • [44] Design of sustainable ultra-high performance concrete: A review
    Wang, Xinpeng
    Wu, Di
    Zhang, Jinrui
    Yu, Rui
    Hou, Dongshuai
    Shui, Zhonghe
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 307
  • [45] Utilization of fibers in ultra-high performance concrete: A review
    Gong, Jihao
    Ma, Yuwei
    Fu, Jiyang
    Hu, Jie
    Ouyang, Xiaowei
    Zhang, Zuhua
    Wang, Hao
    COMPOSITES PART B-ENGINEERING, 2022, 241
  • [46] Mechanical Properties of Ultra-High Performance Concrete before and after Exposure to High Temperatures
    Chen, How-Ji
    Yu, Yi-Lin
    Tang, Chao-Wei
    MATERIALS, 2020, 13 (03)
  • [47] Preparation and properties of ultra-high performance lightweight concrete
    Pan, Huimin
    Yan, Shuaijun
    Zhao, Qingxin
    Wang, Dongli
    MAGAZINE OF CONCRETE RESEARCH, 2023, 75 (06) : 310 - 323
  • [48] Shrinkage Properties of Ultra-High Performance Concrete (UHPC)
    Koh, Kyungtaek
    Ryu, Gumsung
    Kang, Sutae
    Park, Jungjun
    Kim, Sungwook
    ADVANCED SCIENCE LETTERS, 2011, 4 (03) : 948 - 952
  • [49] THE SPECIAL PROPERTIES OF ULTRA-HIGH PERFORMANCE CONCRETE (UHPC)
    Barbos, Gheorghe-Alexandru
    ENERGY AND CLEAN TECHNOLOGIES, 2015, : 771 - 778
  • [50] Flowability and Rheological Properties of Ultra-High Performance Concrete
    Wang S.
    Li B.
    Li C.
    Sun Y.
    Yang T.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2023, 51 (08): : 1962 - 1970