Enhancing mechanical properties, durability and multifunctionality of concrete structures via using ultra-high performance concrete layer: A review

被引:1
|
作者
Dong, Sufen [1 ]
Gu, Jinfang [1 ]
Ouyang, Xinyu [1 ]
Jang, Sung-Hwan [2 ]
Han, Baoguo [1 ]
机构
[1] Dalian Univ Technol, Sch Infrastruct Engn, Dalian 116024, Peoples R China
[2] Hanyang Univ ERICA, Sch Engn, Dept Civil & Environm Engn, Ansan 15588, South Korea
基金
中国国家自然科学基金;
关键词
Ultra-high performance concrete (UHPC) layer; Concrete structures; Mechanical properties; Durability; Multifunctionality; FIBER-REINFORCED CONCRETE; ELECTROCHEMICAL CHLORIDE EXTRACTION; RC BEAMS; FLEXURAL BEHAVIOR; BOND STRENGTH; ACOUSTIC-EMISSION; UHPC; SHEAR; SUBSTRATE; UHPFRC;
D O I
10.1016/j.compositesb.2025.112329
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As a kind of advanced cement-based composites with superior mechanical properties and remarkable durability, ultra-high performance concrete (UHPC) shows great potential in repairing and strengthening concrete structures in the form of layers. Hence, this paper firstly conducts a systematic review on the static/dynamic mechanical properties, interfacial bond performance between UHPC layer and concrete, durability, and multifunctional/eco-friendly properties (e.g. self-sensing, self-heating, self-healing, self-cleaning, and selfliminescence capability) of UHPC layer repaired/strengthened concrete structures. Carbon polymer reinforced plastic bars reinforced UHPC layer significantly enhances the flexural ultimate load and ductility of reinforced concrete (RC) structures, and two-sided layers are economical and reasonable. Roughing interface and epoxy adhesive treatment are conducive to increasing flexural ultimate load and shear resistance of UHPC layerstrengthened RC beams. The failure mode of RC beams under impact load tends to change from shear to flexure by UHPC layer, and the gap less than 10 mm between UHPC layer and RC beam limits crack development in RC beams under single impact load. Strengthening the column-foot zone by using a UHPC jacket with the size higher than the plastic hinge zone improves their seismic performance of RC columns. The increase of NSC substrate strength, surface moisture, the using of water-based epoxy resin agent, and the proper curing can improve the interfacial bond strength between UHPC layer and RC beam. Meanwhile, it is worthwhile to note that UHPC layer is not beneficial for increasing high-temperature spalling resistance of RC structures, but can be used to develop smart and multifunctional infrastructures.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Durability of ultra-high performance concrete - A review
    Li, Junquan
    Wu, Zemei
    Shi, Caijun
    Yuan, Qiang
    Zhang, Zuhua
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 255
  • [2] Physical-mechanical properties and durability of Ultra-high Performance Concrete (UHPC)
    Mitrovic, Stefan
    Popovic, Dragana
    Tepavcevic, Miroslav
    Zakic, Dimitrije
    GRADEVNSKI MATERIJIALI I KONSTRUKCIJE-BUILDING MATERIALS AND STRUCTURES, 2021, 64 (02): : 109 - 117
  • [3] Performance Assessment of Ultra-High Durability Concrete Produced From Recycled Ultra-High Durability Concrete
    Borg, Ruben Paul
    Cuenca, Estefania
    Garofalo, Roberto
    Schillani, Fabrizio
    Nasner, Milena Lozano
    Ferrara, Liberato
    FRONTIERS IN BUILT ENVIRONMENT, 2021, 7
  • [4] Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges
    S. Abbas
    M. L. Nehdi
    M. A. Saleem
    International Journal of Concrete Structures and Materials, 2016, 10 : 271 - 295
  • [5] Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges
    Abbas, S.
    Nehdi, M. L.
    Saleem, M. A.
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2016, 10 (03) : 271 - 295
  • [6] Mechanical Properties and Durability of Ultra-High-Performance Concrete
    Magureanu, Cornelia
    Sosa, Ioan
    Negrutiu, Camelia
    Heghes, Bogdan
    ACI MATERIALS JOURNAL, 2012, 109 (02) : 177 - 183
  • [7] Influence of fibers on the mechanical properties and durability of ultra-high-performance concrete: A review
    Wen, Chengcheng
    Zhang, Peng
    Wang, Juan
    Hu, Shaowei
    JOURNAL OF BUILDING ENGINEERING, 2022, 52
  • [8] Effect of temperature on mechanical properties of ultra-high performance concrete
    Banerji, Srishti
    Kodur, Venkatesh
    FIRE AND MATERIALS, 2022, 46 (01) : 287 - 301
  • [9] Study on the mechanical and rheological properties of ultra-high performance concrete
    Chen, Ying
    Liu, Peng
    Sha, Fei
    Yin, Jian
    He, Sasa
    Li, Qianghui
    Yu, Zhiwu
    Chen, Hailong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 17 : 111 - 124
  • [10] Mechanical Properties of Ultra-high Performance Concrete with Recycled Sand
    Ge X.
    Chu H.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2020, 23 (04): : 810 - 815