Remaining useful life prediction of Lithium-ion batteries based on data preprocessing and CNN-LSSVR algorithm

被引:0
|
作者
Dong, Ti [1 ,2 ]
Sun, Yiming [1 ,2 ]
Liu, Jia [1 ,2 ]
Gao, Qiang [3 ]
Zhao, Chunrong [4 ]
Cao, Wenjiong [1 ,2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch New Energy & Power Engn, Lanzhou 730070, Peoples R China
[2] Innovat Ctr Energy Storage Syst & Operat Control T, Lanzhou 730070, Peoples R China
[3] Gansu Construct Investment Holdings Grp, New Energy Sci & Technol Co Ltd, Wuwei 733000, Peoples R China
[4] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, 10 NSW, Sydney 2006, Australia
关键词
Lithium-ion batteries; RUL prediction; Data preprocessing; Multi-resolution singular value decomposition (MRSVD); Convolutional neural network-least squares; support vector regression (CNN-LSSVR); CHARGE ESTIMATION; STATE; MODEL; OPTIMIZATION; PARAMETERS;
D O I
10.1016/j.ijepes.2025.110619
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lithium-ion batteries are now widely available in power and energy systems. Targeting the thorny issues of limited battery historical cycle data and the impact of uncertainty in the data collection process in practical applications, this study proposes a Remaining useful life (RUL) prediction method for lithium-ion batteries based on the data preprocessing and the joint convolutional neural network (CNN)-least squares support vector regression (LSSVR) algorithm. Based on the performance degradation characteristics of the battery, the method proposes new RUL assessment indexes and corresponding health factors. The innovative Multi-Resolution Singular Value Decomposition (MRSVD) method is implemented to reduce the interference caused by noise and error. Eventually, the CNN-LSSVR algorithm and mutant particle swarm optimisation algorithm are utilised to solve the mapping regression and hyper-parameter optimisation problems, respectively, to achieve a complete prediction of RUL. In this work, the feasibility of the method is verified using publicly available datasets and compared with other common noise reduction and prediction algorithms after noise reduction and prediction experiments. The results show that the available capacity and internal resistance of the battery as health factors can effectively achieve degradation performance prediction. Compared with other traditional algorithms, the proposed RUL prediction method can reduce the mean absolute error and root mean square error by at least 37% and 61%, respectively, and has better stability. The RUL prediction method provided pave the new way for accurate prediction of battery data with limited number of samples and high noise characteristics. The fast and accurate battery RUL prediction method proposed in this work is highly beneficial for enhancing the stable and economic operation of power and energy systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Deep Learning and Soft Sensing
    Wang, Zhuqing
    Ma, Qiqi
    Guo, Yangming
    ACTUATORS, 2021, 10 (09)
  • [32] Remaining useful life prediction for lithium-ion batteries in later period based on a fusion model
    Cai, Li
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (02) : 302 - 315
  • [33] Study on Remaining Useful Life Prediction of Lithium-ion Batteries Based on Charge Transfer Resistance
    基于传荷电阻的锂离子电池剩余寿命预测研究
    Dai, Haifeng (tongjidai@tongji.edu.cn); Dai, Haifeng (tongjidai@tongji.edu.cn), 1600, Chinese Mechanical Engineering Society (57): : 105 - 117
  • [34] Remaining useful life prediction of lithium-ion batteries based on hybrid ISSA-LSTM
    Zou H.
    Chai Y.
    Yang Q.
    Chen J.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (19): : 21 - 31
  • [35] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Spherical Cubature Particle Filter
    Wang, Dong
    Yang, Fangfang
    Tsui, Kwok-Leung
    Zhou, Qiang
    Bae, Suk Joo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (06) : 1282 - 1291
  • [36] The development of machine learning-based remaining useful life prediction for lithium-ion batteries
    Xingjun Li
    Dan Yu
    Vilsen S?ren Byg
    Store Daniel Ioan
    Journal of Energy Chemistry , 2023, (07) : 103 - 121
  • [37] iTransformer Network Based Approach for Accurate Remaining Useful Life Prediction in Lithium-Ion Batteries
    Jha, Anurag
    Dorkar, Oorja
    Biswas, Atriya
    Emadi, Ali
    2024 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO, ITEC 2024, 2024,
  • [38] The development of machine learning-based remaining useful life prediction for lithium-ion batteries
    Li, Xingjun
    Yu, Dan
    Byg, Vilsen Soren
    Ioan, Store Daniel
    JOURNAL OF ENERGY CHEMISTRY, 2023, 82 : 103 - 121
  • [39] Remaining Useful Lifetime Prediction of Lithium-Ion Batteries Based on Fragment Data and Trend Identification
    Lu, Yiqing
    Shi, Ye
    Liu, Yu
    Wang, Haoyu
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025,
  • [40] An Online Prediction of Capacity and Remaining Useful Life of Lithium-Ion Batteries Based on Simultaneous Input and State Estimation Algorithm
    Ouyang, Tiancheng
    Xu, Peihang
    Chen, Jingxian
    Lu, Jie
    Chen, Nan
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (07) : 8102 - 8113