The Maize Gene ZmGLYI-8 Confers Salt and Drought Tolerance in Transgenic Arabidopsis Plants

被引:0
|
作者
Yu, Ting [1 ]
Dong, Wei [1 ]
Hou, Xinwei [2 ]
Sun, Aiqing [3 ]
Li, Xinzheng [1 ]
Yu, Shaowei [4 ]
Zhang, Jiedao [1 ]
机构
[1] Shandong Agr Univ, Coll Life Sci, State Key Lab Crop Biol, Tai An 271018, Peoples R China
[2] Shandong Acad Agr Sci, Maize Res Inst, Jinan 250100, Peoples R China
[3] Shandong Agr Univ, Coll Agron, State Key Lab Crop Biol, Tai An 271018, Peoples R China
[4] Shandong Agr Univ, Coll Life Sci, State Key Lab Wheat Improvement, Tai An 271018, Peoples R China
关键词
glyoxalase I; methylglyoxal; salt tolerance; drought tolerance; maize; GLYOXALASE-I; METHYLGLYOXAL DETOXIFICATION; MOLECULAR CHARACTERIZATION; OXIDATIVE STRESS; PATHWAY; TOBACCO; CLONING; PEROXIDASE; SEEDLINGS; SYSTEMS;
D O I
10.3390/ijms252010937
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Methylglyoxal (MG), a highly reactive and cytotoxic alpha-oxoaldehyde compound, can over-accumulate under abiotic stress, consequently injuring plants or even causing death. Glyoxalase I (GLYI), the first enzyme of the glyoxalase pathway, plays multiple roles in the detoxification of MG and in abiotic stress responses. However, the GLY1 gene in maize has been little studied in response to abiotic stress. In this study, we screened a glyoxalase I gene (ZmGLYI-8) and overexpressed in Arabidopsis. This gene was localized in the cytoplasm and can be induced in maize seedlings under multiple stress treatments, including salt, drought, MG, ABA, H2O2 and high temperature stress. Phenotypic analysis revealed that after MG, salt and drought stress treatments, overexpression of ZmGLYI-8 increased the tolerance of transgenic Arabidopsis to MG, salt and drought stress. Furthermore, we demonstrated that the overexpression of ZmGLYI-8 scavenges accumulated reactive oxygen species, detoxifies MG and enhances the activity of antioxidant enzymes to improve the resistance of transgenic Arabidopsis plants to salt and drought stress. In summary, this study preliminarily elucidates the molecular mechanism of the maize ZmGLYI-8 gene in transgenic Arabidopsis and provides new insight into the breeding of salt- and drought-tolerant maize varieties.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene
    Alcazar, Ruben
    Planas, Joan
    Saxena, Triambak
    Zarza, Xavier
    Bortolotti, Cristina
    Cuevas, Juan
    Bitrian, Marta
    Tiburcio, Antonio F.
    Altabella, Teresa
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2010, 48 (07) : 547 - 552
  • [22] Antisense expression of an Arabidopsis ω-3 fatty acid desaturase gene reduces salt/drought tolerance in transgenic tobacco plants
    Im, YJ
    Han, O
    Chung, GC
    Cho, BH
    MOLECULES AND CELLS, 2002, 13 (02) : 264 - 271
  • [23] The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis
    Feibing Wang
    Hong Zhu
    Weili Kong
    Rihe Peng
    Qingchang Liu
    Quanhong Yao
    Planta, 2016, 244 : 59 - 73
  • [24] The cotton GhMYB4 gene enhances salt and drought tolerance in transgenic Arabidopsis
    Wang, Zunxin
    Li, Yang
    Hu, Laibao
    Ye, Yuxiu
    Chen, Jiamin
    Li, Jianan
    Pei, Baolei
    Wang, Guangpeng
    Chen, Siyuan
    Cheng, Yanhong
    Huang, Ganlong
    Chen, Xinhong
    Wang, Feibing
    AGRONOMY JOURNAL, 2021, 113 (06) : 4762 - 4776
  • [25] The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis
    Wang, Feibing
    Zhu, Hong
    Kong, Weili
    Peng, Rihe
    Liu, Qingchang
    Yao, Quanhong
    PLANTA, 2016, 244 (01) : 59 - 73
  • [26] Maize WRKY Transcription Factor ZmWRKY106 Confers Drought and Heat Tolerance in Transgenic Plants
    Wang, Chang-Tao
    Ru, Jing-Na
    Liu, Yong-Wei
    Li, Meng
    Zhao, Dan
    Yang, Jun-Feng
    Fu, Jin-Dong
    Xu, Zhao-Shi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (10)
  • [27] Function of the wheat TaSIP gene in enhancing drought and salt tolerance in transgenic Arabidopsis and rice
    Hao-Yue Du
    Yin-Zhu Shen
    Zhan-Jing Huang
    Plant Molecular Biology, 2013, 81 : 417 - 429
  • [28] Function of the wheat TaSIP gene in enhancing drought and salt tolerance in transgenic Arabidopsis and rice
    Du, Hao-Yue
    Shen, Yin-Zhu
    Huang, Zhan-Jing
    PLANT MOLECULAR BIOLOGY, 2013, 81 (4-5) : 417 - 429
  • [29] Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants
    Kim, Eun Yu
    Seo, Young Sam
    Park, Ki You
    Kim, Soo Jin
    Kim, Woo Taek
    GENE, 2014, 552 (01) : 146 - 154
  • [30] The SINAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana
    Wu, Dandan
    Sun, Yinghao
    Wang, Hongfei
    Shi, He
    Su, Mingxing
    Shan, Hongyan
    Li, Tongtong
    Li, Qiuli
    GENE, 2018, 662 : 10 - 20